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Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteo-

cytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular

programs that control this complex cellular-network. We define an osteocyte transcriptome

signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no pre-

viously known role in the skeleton and are enriched for genes regulating neuronal network

formation, suggesting this programme is important in osteocyte communication. We eval-

uated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte tran-

scriptome signature genes that control bone structure and function. We showed osteocyte

transcriptome signature genes are enriched for human orthologs that cause monogenic

skeletal disorders (P= 2.4 × 10−22) and are associated with the polygenic diseases osteo-

porosis (P= 1.8 × 10−13) and osteoarthritis (P= 1.6 × 10−7). Thus, we reveal the molecular

landscape that regulates osteocyte network formation and function and establish the

importance of osteocytes in human skeletal disease.
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The skeleton is a highly dynamic structure that changes in
shape and composition throughout life. Osteocytes are the
most abundant cell type in bone and have emerged as

master regulators of the skeleton. These enigmatic cells are con-
nected via ramifying dendritic processes that form a complex
multicellular network distributed throughout mineralised bone1,2.
The scale and complexity of the osteocyte network is comparable
to neurons in the brain, with 42 billion osteocytes present in the
human skeleton forming 23 trillion connections2,3. This network
enables osteocytes to detect and respond to mechanical strain,
hormones and local growth factors and cytokines1. The network
responds by regulating the formation and activity of osteoclasts
and osteoblasts, instructing these cells to repair damaged bone,
controlling bone mass and composition, and ensuring the optimal
distribution of bone tissue in response to mechanical stress.
Osteocytes also remove and replace bone surrounding the
osteocyte network, a surface area of >200 m2,3, by the process of
perilacunar remodelling, liberating calcium and phosphate in
response to endocrine demands4. These features allow the
osteocyte network to maintain both the structural integrity of the
skeleton and mineral homeostasis. Osteocytes also have reg-
ulatory functions beyond the skeleton, including in skeletal
muscle, adipose tissue, the central nervous system and in the
control of phosphate homeostasis and energy expenditure, indi-
cating the network acts as an important endocrine organ5–8.

Although osteocytes are pivotal in controlling the skeleton, the
molecular programmes that regulate their formation and function
are poorly defined. Osteocytes are entombed within bone making
them challenging to isolate and study. As a result osteocytes have
been omitted from large-scale efforts to map tissue-specific
transcriptomes9–12 and studies of their transcriptome are
limited13–16. Consequently, the influences of anatomical location,
age and sex on osteocyte regulatory pathways are unclear and
their role in the pathogenesis of skeletal diseases is unknown.

Mutations in genes that have highly enriched expression in
osteocytes cause rare bone and mineral disorders. For example,
autosomal recessive inactivating mutations in SOST, which
encodes the Wnt-antagonist sclerostin, result in the high bone
mass disorder sclerosteosis type 1 (OMIM 269500)17. Deletion of
a SOST regulatory element causes van Buchem disease (OMIM
239100)18,19 and inactivating mutations in DMP1, the gene
encoding dentin matrix acidic phosphoprotein 1, cause autosomal
recessive hypophosphataemia (OMIM 241520)20. However,
despite the classification of monogenic skeletal disorders identi-
fying over six hundred individual diseases21, beyond a limited
number of exceptions the role of genes enriched in osteocytes in
these disorders remains largely unknown.

Common, complex skeletal diseases, including osteoporosis
and osteoarthritis (OA), are also highly heritable. Genetic factors
contribute to 50–80% of the variance in bone mineral density
(BMD), the major determinant of osteoporosis susceptibility, and
account for >50% of the variance in susceptibility to OA22–24.
Nevertheless, recent large-scale genome-wide association studies
(GWAS) have defined only a proportion of the heritability in
BMD and OA susceptibility25,26, underscoring the need for
alternative approaches to identify genes contributing to these
diseases. We hypothesised that mutations in genes with enriched
expression in osteocytes would cause rare monogenic skeletal
dysplasias and mineral disorders, and contribute to the risk of
common polygenic skeletal diseases including osteoporosis and
osteoarthritis.

To address this hypothesis, we developed a method to define a
transcriptomic map of the osteocyte network and used it to
investigate relationships between genes with enriched expression
in osteocytes and human skeletal disease. We defined the genes
expressed in osteocytes isolated from different skeletal sites, at

different ages and from both sexes, and discovered bone-specific
and sexually dimorphic differences in the osteocyte transcriptome
during post-natal development. We defined an osteocyte tran-
scriptome signature, a profile of genes with enriched expression in
osteocytes, and discovered novel genes and molecular pro-
grammes that control formation and function of the osteocyte
network. Finally, we showed that osteocyte transcriptome sig-
nature genes are (i) highly enriched for genes that cause mono-
genic skeletal disorders and (ii) significantly over-represented
with susceptibility genes for BMD and OA identified by
human GWAS.

Results
The osteocyte-enriched transcriptome is highly conserved
throughout the skeleton. To investigate the genes that control
osteocytes, we first identified the repertoire of genes expressed in
osteocytes, the osteocyte-enriched transcriptome, from three
different skeletal sites (Fig. 1a, b). Total RNA was isolated from
skeletal samples (98% cortical bone, 2% cancellous bone) highly
enriched for osteocytes (>80% of cells present) from the tibiae,
femora and humeri of 16-week-old mice (n= 8) and sequenced
(Fig. 1b, c and Supplementary Fig 1a–d). A threshold of ‘active’
gene expression was determined based on the distribution of
normalised gene expression in each sample27 (Fig. 1d and Sup-
plementary Data 1).

In all, 14,794 genes were actively expressed in the three bone
types with 92% of genes expressed at all sites and 96% of genes
validated in one of three independent datasets, including the
IDG-SW3 osteocytic cell-line, laser-capture micro-dissected
osteocytes or osteocytes isolated by collagenase digestion (Fig. 1e,
f and Supplementary Data 2). These comprised protein-coding
genes, long non-coding RNAs (lncRNAs), genes present in the
GENCODE transcriptome annotation but yet to be experimen-
tally confirmed (TEC), and novel genes yet to be reported in any
public annotation (Fig. 1e). The number of genes actively
expressed in osteocytes was similar to other tissues, including
8997 genes expressed in all 12 organs and tissues examined28

(Supplementary Fig. 2a and Supplementary Data 2). Osteocytes
formed a separate cluster in a principal component analysis
(PCA), confirming the osteocyte-enriched transcriptome is clearly
distinct from the transcriptome of other tissues (Supplementary
Fig. 2b). In support of this, analysis of gene expression specificity,
using the Tau measure29 calculated across these tissues, showed a
significant proportion of genes with high specificity of expression
for osteocytes (Supplementary Fig. 2c).

Whilst the osteocyte-enriched transcriptome was conserved
among bones, 27 genes were differentially expressed between
skeletal sites (LFC > 0.5, P < 0.05, Fig. 1g and Supplementary
Data 3). These included seven genes expressed specifically in
either the fore (two genes) or hindlimb (five genes) (Fig. 1h). All
encoded developmental transcription factors. They included T-
box 5 (Tbx5) and homeobox-d9 (Hoxd9), expressed exclusively in
the humerus and known to establish forelimb identity30,31. By
contrast, Homeobox-c8-c11 (Hoxc8, Hoxc9, Hoxc10 and Hoxc11)
and paired-like homeodomain 1 (Pitx1) were expressed in the
femur and tibia only, and not the humerus. In the developing
limb bud, Pitx1 is expressed exclusively in the hindlimb and is the
master regulator of hindlimb-type identity32. Aberrant expression
of PITX1 in the forelimb leads to homeotic arm-to-leg
transformation in Liebenberg syndrome (OMIM 186550)33.
Fifty-two percent of the 27 differentially expressed genes, were
homeobox genes, or Hox-antisense lncRNAs, indicating this
family may be important in maintaining the identity of osteocytes
at different sites (Fig. 1h). Together these data show that the
osteocyte transcriptome is highly conserved at different

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22517-1

2 NATURE COMMUNICATIONS |         (2021) 12:2444 | https://doi.org/10.1038/s41467-021-22517-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


anatomical sites, although, homeobox genes, which are typically
associated with patterning in development, identify osteocytes
from different skeletal locations, even in adult mice.

Sex and age differences in the osteocyte-enriched tran-
scriptome. Since bone structure and bone mass vary with sex and
age34–36, we hypothesised that the osteocyte-enriched

transcriptome differs between the sexes and changes with age. We
therefore analysed bone structure and the transcriptome of male
and female mice at different ages (Fig. 2a). Bone length and bone
mineral content (BMC), but not bone mineral density (BMD),
differed between sexes, whereas bone length, BMC and BMD
increased with age in both sexes (Fig. 2b and Supplementary
Fig. 3). The total number of genes actively expressed by osteocytes
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increased with skeletal maturation with 81% of genes expressed at
all ages in both sexes (Fig. 2c and Supplementary Data 2).
Comparison of gene expression between age groups showed dif-
ferences between 4 and 10 weeks of age (female P= 8 × 10−3,
male P= 3 × 10−5), but not from 10 to 16 weeks or 16–26 weeks,
demonstrating the osteocyte transcriptome expressed during
growth is distinct from the transcriptome in the adult skeleton
(Fig. 2d). Comparison of the osteocyte transcriptome between
sexes showed it was different between male and female mice in
the mature skeleton (16 weeks, P= 8.0 × 10−3 and 26 weeks, P=
2.8 × 10−2), but not at earlier ages (Fig. 2e).

To identify genes and processes that contribute to differences
in age and sex, clusters of co-expressed genes were identified by
weighted gene co-expression network analysis. Seven clusters of
correlated genes (denoted by seven colours) were identified
(Supplementary Fig. 4a and Supplementary Data 4). One cluster
(denoted by Grey) contained genes that were not correlated
with each other or other clusters. Between 86% and 97% of
genes in each cluster were also found in at least one of three
orthogonal datasets, including the IDG-SW3 osteocytic cell
line, micro-dissected osteocytes or osteocytes isolated by
collagenase digestion (Supplementary Fig. 4b). Each cluster
was associated with distinct biological processes (Supplemen-
tary Fig. 4b). The expression of genes within two clusters
(purple and turquoise) increased with age, whereas, gene
expression in two clusters (black and brown) decreased with age
(Supplementary Fig. 4a). The expression of genes in the Brown
and Magenta clusters were associated with both age and sex
(Supplementary Fig. 4a and Supplementary Fig. 5a). The Brown
cluster contained genes encoding bone matrix constituents,
including osteocalcin (Bglap, Bglap2), osteonectin (Sparc) and
bone sialoprotein (Ibsp) and was associated with protein-
processing and transport (Supplementary Fig. 4a and Supple-
mentary Data 4). The Magenta cluster included cathepsin K
(Ctsk), tartrate resistant acid phosphatase (Acp5) and the
vacuolar ATPase family and was associated with processes
relating to bone resorption (GO:0045453, P= 4.37 × 10−6),
osteoclast differentiation (GO:0030316, P= 1.40 × 10−8), pH
reduction (GO:0045851, P= 2.31 × 10−6) and ATP-coupled
cation transport (GO:0099132, P= 2.13 × 10−14; Supplemen-
tary Fig 5b, c and Supplementary Data 4). To exclude a
contribution to the Magenta cluster from genes expressed in
contaminating osteoclasts we stained paraffin sections of
osteocyte-enriched bone samples for tartrate resistant acid
phosphatase (TRAP) and confirmed the absence of TRAP
positive osteoclasts on trabecular and cortical endosteal bone

surfaces (Supplementary Fig 5d). Furthermore, analysis of the
top 20 Magenta cluster genes, which include genes typically
found in osteoclasts, showed that 19 were found in at least one
of the three orthogonal datasets (Supplementary Fig 5e).
Together this suggests the Magenta cluster genes may be
important in regulation of perilacunar-resorption15,37. To
investigate further, we examined expression of Magenta cluster
genes in lactating mice in a publicly available microarray
dataset15. Sixty-six of the 84 Magenta genes were up-regulated
during lactation (P= 3.8 × 10−35) and this was reversed post-
lactation (P= 1.2 × 10−15; Supplementary Fig 5f) strengthening
the notion that the Magenta cluster identifies genes involved in
perilacunar remodelling. Together, this highlights the dynamic
regulation of the osteocyte transcriptome during post-natal
skeletal development and identifies clusters of genes that are
differentially regulated during skeletal maturation and between
the sexes.

A unique transcriptome signature defines the osteocyte. To
identify the genes that distinguish osteocytes specifically, we
identified a profile of genes whose expression was enriched in
osteocytes relative to other cell types. We hypothesised that genes
important for osteocyte-specific functions are actively expressed
and preferentially expressed in osteocytes compared to other cell
lineages within bone, including bone marrow cells and cells lining
bone (Fig. 3a). To test this, we performed transcriptome analysis
on bone samples enriched with osteocytes, from which bone
marrow and cells lining bone were removed, and compared this
to whole-bone samples, in which bone marrow was retained
(Fig. 3a). The expression of genes encoding established osteocyte
proteins were among the most enriched in osteocyte-enriched
bone samples (Fig. 3b, Supplementary Data 2). Sost and Mepe
were enriched by >100-fold and Dmp1 >40 fold38, whereas the
expression of housekeeping genes was unaffected by cell com-
position and genes typically expressed in bone marrow cells were
depleted in osteocyte-enriched samples (Fig. 3b).

Next, we fitted a four component Gaussian Mixture Model
(GMM) to the distribution of gene enrichment and used this to
calculate a threshold of osteocyte-enrichment. This model
identified 1777 genes with significantly enriched expression in
osteocytes (Fig. 3b and Supplementary Data 2). As an additional
level of stringency 538 genes enriched in bone marrow or tissues
that could contaminate the osteocyte enrichment strategy, such as
blood or muscle (Fig. 3c and Supplementary Data 2)13, were
excluded leaving 1239 genes significantly enriched for expression

Fig. 1 The osteocyte transcriptome is broadly conserved across the skeleton. a Schematic of the overall study design used to define the osteocyte
transcriptome, to define an osteocyte transcriptome signature, the profile of genes enriched in osteocytes, and to identify their role in skeletal disease.
b Diagram illustrating the 3 bone-types in which the osteocyte transcriptome was sequenced and compared. c Representative micro-CT and histological
images of bone samples prior to processing (i–ii) and following osteocyte isolation (iii–iv), illustrating the effective removal of bone marrow, muscle and
growth plates and enrichment of osteocytes (iv) (n= 8 biological independent mice). Boxes and dotted lines identify areas of high magnification confirming
osteocyte isolation. Bone (B), bone marrow (BM), muscle (M) and growth plate (GP) are identified. d Actively expressed genes were identified based on
the normalised gene expression distribution (blue histogram) and a hypothetical distribution of active promoters (red dotted line)27 (i). Vertical line
denotes the sample-specific threshold of actively expressed genes. Genes were considered active if they were above sample-specific threshold in all
replicates, inactive if they were below the threshold in all replicates, or variable if they were above the threshold in at least one but not all replicates (ii).
e The number of active genes and biotype composition in the osteocyte transcriptome across skeletal sites (i), and the percentage of total active genes
detected in osteocytes in at least one (1+) and two or more (2+) orthogonal datasets (ii). The Any bone column reflects the number of genes actively
expressed at any skeletal site. The All bones column reflects the number and proportion (as a percentage) of genes that were actively expressed in all
skeletal sites. TEC= To be Experimentally Confirmed. f Pearson correlation of gene expression between individual replicates and bone types (mean of each
bone type comparison represented by numbers above heatmap). Tib= tibia, Fem= femur, Hum= humerus, Rep= biological replicate. g Genes that were
differentially expressed between osteocytes isolated from different bone types. Homeobox genes and antisense-RNAs are in red (FDR≤ 0.05, LFC > 0.5).
h Methodology for identifying genes expressed in a site-specific manner and a Venn diagram identifying the genes expressed in one bone type but
not others.
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in osteocytes (Fig. 3d and Supplementary Data 5). In total, 85% of
these genes showed moderate to high expression specificity29,
using the Tau measure, within the osteocyte network relative to
12 non-skeletal tissues (Fig. 3e). Furthermore, osteocyte-enriched
genes were highly expressed in osteocytes relative to osteoblasts
(P= 1.1 × 10−38) and bone-lining cells (P= 1.1 × 10−43) in a
publicly available microarray dataset (Fig. 3f)39. Using this
pipeline we thus defined a list of 1239 genes whose expression
is enriched in osteocytes relative to bone marrow and other cells

in the osteoblast lineage. We defined this profile of genes as the
osteocyte transcriptome signature (Supplementary Data 5 and
Fig. 3d).

The majority of osteocyte transcriptome signature genes have
no known function in the skeleton. Analysis of the osteocyte
transcriptome signature showed it was enriched with genes
associated with skeletal biological processes in the GO
database40 (4.5-fold-enrichment (FE), P= 1.0 × 10−67), and
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with skeletal phenotypes in the Mouse Genome Informatics
database41 (MGI, 2.7 FE, P= 4.7 × 10−35). This included Sost,
Dkk1, Mepe and Dmp1, genes known to be highly expressed in
osteocytes, and genes with an established role in the skeleton,
such as osteoprotegerin (Tnfsf11b), Wingless-type family
member-1 (Wnt1)42, fibroblast growth factor-9 (Fgf9)43 and
Iroquois homeobox protein 5 (Irx5)44 (Fig. 4a and Supple-
mentary Fig 6). Interestingly, Tnfsf11 encoding RANKL (the
ligand for receptor activator of NFkB), was expressed by
osteocytes but not present in the osteocyte transcriptome sig-
nature (Supplementary Fig 6). A limited number of genes were
not annotated with skeletal terms in the GO database, but have
been reported to have a role in the skeleton (denoted as
‘reported’) (Fig. 4a). They include the Wnt-regulator notum
(Notum), which regulates bone formation45–47 and a dis-
tintegrin and metalloproteinase like member (Adamtsl2), which

is implicated in geleophysic dysplasia 1 (OMIM 231050)48. The
majority of osteocyte transcriptome signature genes (78%, n=
968) had not previously been shown to have a role in the
skeleton (‘unannotated’ in Fig. 4a).

In addition to known genes, forty-nine novel genes were
actively expressed in osteocytes (Supplementary Fig 7a and
Supplementary Data 6). Eleven were present in the osteocyte
transcriptome signature, (Supplementary Fig 7b), including 7
that were absent from 12 other tissues (Supplementary Fig 7c).
The multiple exons and splicing patterns suggested post-
transcriptional processing of transcripts, while analysis of
sequence-coding potential indicated they were all non-coding
genes (Supplementary Fig 7c). Thus, the osteocyte transcrip-
tome signature expands the repertoire of genes whose
expression is enriched in osteocytes and includes known and
novel genes.
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Analysis of GO terms enriched in the osteocyte transcriptome
signature identified eight semantically similar clusters of related
processes (Fig. 4b and Supplementary Data 7). Cluster 1 was
enriched with processes associated with ossification (GO:0001503,
P= 2.3 × 10−41), cluster 2 extracellular matrix organisation
(GO:0030196, P= 2.8 × 10−41), cluster 3 skeletal system devel-
opment (GO:0001501, P= 2.9 × 10−38), cluster 4 osteoblast
differentiation (GO:0001649, P= 4.2 × 10−22) and cluster 6
mesenchymal cell proliferation (GO:0010463, P= 3.44 × 10−15),
whereas, clusters 7 and 8 were enriched with processes associated
with signalling, including wnt signalling pathway (GO:0016055,
P= 3.0 × 10−13) and cellular response to BMP stimulus
(GO:0071773, P= 2.0 × 10−10, Fig. 4b). GO term analysis also
identified cluster 5 which was enriched with terms associated with
axon guidance including axon development (GO:0061564, P=
9.6 × 10−22) and axonogenesis (GO:0007409, P= 1.0 × 10−20;
Fig. 4b). Axon guidance (mmu04360, P= 7.8 × 10−17) was also
the top-ranked KEGG pathway (Supplementary Fig 8a). This
included genes in the Semaphorin, Ephrin, Netrin and Slit
signalling families and their respective receptors Plexins, Eph-
receptors, Uncoordinated-5 (Unc-5) and Roundabout (Robo),
which are pivotal regulators of axonal guidance (Supplementary
Fig 8b). Since axon guidance directs the formation of the
intercellular neuronal network49, we hypothesised that this
pathway is a key molecular programme required for osteocyte
network formation.

To examine this, we investigated temporal patterns of
osteocyte transcriptome signature gene expression in the
in vitro IDG-SW3 model of osteocyte cell differentiation in
which cells differentiate from late osteoblast-like cells, via early
osteocytes, to late osteocytic cells50. Three clusters of genes
were identified (Fig. 4c and Supplementary Data 5), an early
expression cluster − 377 genes most highly expressed in
osteoblast-like cells, but down-regulated as cells transition to
early and mature osteocytes (Fig. 4c, d); an early activation
cluster – 453 genes up-regulated in early osteocytes, and which
remained expressed in mature osteocytes (Fig. 4c, d); and a
maturation cluster – 409 genes up-regulated in mature
osteocytes (Fig. 4c, d). The early expression cluster was
enriched for processes associated with extracellular matrix
organisation (GO:0030198, P= 7.51 × 10−16, Fig. 4e) and
the maturation cluster with ossification (GO:0001503, P=
3.40 × 10−26, Fig. 4e). The early activation cluster was associated
with axon development (GO:0061564, P= 1.31 × 10−13),

axonogenesis (GO:0007409, P= 1.38 × 10−13) and axon gui-
dance (GO:0007411, P= 2.43 × 10−9, Fig. 4e). The upregulation
of these processes coinciding with early osteocyte differentia-
tion and sustained expression in late osteocytes suggests axonal
guidance pathways are important in the formation and
maintenance of the osteocyte network.

Osteocyte transcriptome signature genes control bone struc-
ture and function. To establish whether osteocyte transcriptome
signature genes have a functional role in the skeleton, we
screened mice with single gene deletions that have undergone
detailed skeletal phenotyping by the Origin of Bone and Carti-
lage Disease (OBCD) programme (http://www.boneandcartilage.
com/bonepipeline.html). Structural and functional bone pheno-
typing has been performed in 733 knockout mouse lines, of
which 64 had deletions of genes present in the osteocyte tran-
scriptome signature (Fig. 5a and Supplementary Data 8). In total,
26 (41%) of these knockout lines had either structural and/or
functional skeletal phenotypes. Eleven were in genes with
established roles in the skeleton, including Daam225 and Pls351.
Fifteen were in genes not annotated with skeletal terms or phe-
notypes in the GO or MGI databases, suggesting they are novel
regulators of bone structure and/or function (Fig. 5a, Supple-
mentary Data 8). These included the activator of transcription
and development regulator (Auts2), a regulator of neuron
migration52, dapper antagonist of beta-catenin 3 (Dact3), which
controls Wnt signalling53,54 and low-density lipoprotein receptor
class A domain containing protein (Ldlrad4), an inhibitor of
TGF-Beta signalling55 (Fig. 5a). Genes in the MGI database, but
without functional evidence of a role in the skeleton such as
cortactin binding protein 2 (Cttnbp2) (Fig. 5a), a regulator of
dendrite arbourisation56, were also identified. Auts2+/− mice had
decreased femoral bone length and cortical diameter (Fig. 5b, c),
whereas Cttnbp2−/− had normal femoral length, BMC and
functional parameters but increased vertebral BMC and max-
imum load (Fig. 5b,c,e). Dact3−/− had normal femoral bone
length, BMC, bone structural parameters and functional para-
meters, however, BMC was increased in the vertebra and this was
accompanied by increased yield load (Fig. 5b, c, e). Ldlrad4−/−

had normal bone length, BMC and functional parameters but
had decreased bone volume (BV/TV), decreased trabecular
number (Tb.N) and increased trabecular separation (Tb.Sp;
Fig. 5b, c). High resolution micro-CT analysis of osteocyte
lacunae showed that deletion of Cttnbp2 and Ldlrad4 caused an

Fig. 3 Defining an osteocyte transcriptome signature. a Experimental design used to identify genes with enriched expression in osteocytes. Diagram
illustrating the strategy used to identify genes enriched for expression in osteocytes in bone samples enriched with osteocytes relative to intact bone
samples in which bone marrow and cells lining bone were retained (i). Experimental workflow used to identify genes enriched for expression in osteocytes
(ii). b Gene-enrichment in osteocyte-enriched bone samples relative to whole-bone samples distinguished genes known to be expressed in osteocytes
(blue) from housekeeping genes (green) and genes expressed in marrow cell populations (yellow) (i). Enrichment for each individual gene is shown as a
dot and plotted as a function of normalised gene expression (log2-FPKM). The four component gaussian mixture model fitted to the density distribution of
gene-enrichment in (i) used to define the osteocyte enrichment threshold (ii). Each component is denoted by a separate colour. The top two Gene
Ontology biological processes associated with genes in each component are illustrated in coloured boxes with p-values (Bonferroni adjusted) calculated by
hypergeometric test. (ii). 1777 genes above the osteocyte-enrichment threshold (indicated by the red dashed line) were significantly enriched for
expression in osteocytes (iii). LFC= log2 fold-change. c Volcano plots comparing the expression of osteocyte-enriched genes (from b) with blood (i), bone
marrow (ii) and muscle (iii)13. Dashed lines represent p < 0.05 cutoff. Genes significantly enriched in these tissues relative to osteocytes are identified as
red dots. P-values were calculated in the original publishing article13 by F-test with Benjamini–Hochberg adjustment. d Filtering pipeline used to define the
1239-gene osteocyte transcriptome signature (OTS). The number of genes remaining at each filtering stage is indicated. e Expression specificity29 (Tau) of
OTS genes relative to other organs and tissues28. Genes with Tau <0.15= low expression specificity in osteocytes (green), 0.15≤ Tau≤ 0.85=moderate
expression specificity (orange), while Tau > 0.85= high expression specificity (red). f OTS genes were enriched for expression in osteocytes relative to
osteoblasts and bone-lining cells isolated by laser-capture microdissection. Tukey boxplots show a summary of median OTS gene expression values in each
cell type calculated across n= 3 biological replicates from a single experiment. Boxes indicate median and interquartile range (IQR) of scaled, normalised
gene expression values, whiskers denote values ±1.5 × IQR and outlier values beyond this range are shown as individual points. P-values (two-tailed,
Benjamini and Hochberg adjusted) were calculated by competitive gene set test accounting for inter-gene correlation (CAMERA)105.
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increase in lacuna volume with increased numbers of large
lacunae and fewer smaller lacunae, deletion of Auts2 enhanced
lacuna sphericity, whereas Dact3 deletion had no effect on size
distribution or sphericity (Fig. 5d and Supplementary Fig 9).
Auts2 and Ldlrad4 expression was higher in osteocyte-enriched
bone than in other tissues. By contrast, expression of Cttnbp2
and Dact3 was highest in brain and/or adrenal gland, respectively
(Supplementary Fig 10), suggesting that deletion of these two
genes might result in both direct local effects on the skeleton and
secondary additional contributions via their expression in other
tissues.

In addition to annotated genes, mice with targeted deletion of
the novel, non-annotated genes Obcdi008175 and Obcdi042809
also had abnormal skeletal phenotypes, whereas, Obcdi007392
deficient mice had normal bones (Supplementary Fig 11). Male
Obcdi008175−/− mice had increased femoral BMC and female
Obcdi008175−/− mice had decreased femoral length and
vertebral strength. By contrast, female Obcdi042809−/− mice
had decreased vertebral BMC and strength (Supplementary
Fig 11).

These data demonstrate that the osteocyte transcriptome
signature identifies genes not previously known to affect bone,
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Fig. 4 Genes and control pathways identified by the osteocyte transcriptome signature. a The top 26 osteocyte transcriptome signature genes most
enriched in osteocytes (outer ring). Genes annotated with either a skeletal biological process (GO database) or skeletal phenotype (MGI database) are
highlighted blue; genes reported with experimental evidence of a role in the skeleton are brown, whereas unannotated genes without a skeletal annotation
in GO or MGI and no experimental evidence of a role in the skeleton reported in the literature are shown in grey. Numbers denote log2 fold-enrichment
(LFC) in gene expression in osteocytes. The proportion of all osteocyte transcriptome signature genes annotated (blue) or unannotated (grey) with a
skeletal annotation in GO or MGI is shown in the inner ring. b Clusters (n= 8) of semantically similar biological processes (GO) significantly enriched in
the osteocyte transcriptome signature are identified by different colours (Bonferroni-corrected P < 0.05). The top 2 terms (by P-value) in each of the eight
clusters are listed. c Heatmap showing clustering of osteocyte transcriptome signature genes based on distinct co-expression patterns during osteocytic-
differentiation50 of the IDG-SW3 cell-line, from osteoblast-like cells (day 3) to early (day 14) and mature osteocytes (day 35). The name and number of
genes for each cluster are labelled. Cluster colours correspond to subsequent panels (d–e). d Changes in early expression cluster (i), early activation
cluster (ii) and maturation cluster (iii) of genes during osteocyte differentiation. Tukey boxplots show the distribution of gene expression values for each
cluster in cells from three independent experiments (n= 3). Boxes indicate median and interquartile range (IQR) of scaled, normalised gene expression
values, whiskers denote values ±1.5 × QR and outlier values beyond this range are shown as individual points. e Biological processes (BP) enriched in the
early expression cluster (i), the early activation cluster (ii) and the maturation cluster (iii). The top 5 GO BP terms in each cluster with P-values (Bonferroni
adjusted) calculated by hypergeometric test.
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including novel genes, that play important structural and
functional roles in the skeleton.

Osteocyte transcriptome signature genes are associated with
rare skeletal disorders. Given their functional role in mice, we

next hypothesised that the osteocyte transcriptome signature
would be enriched for genes that cause rare monogenic skeletal
disorders in humans. Three-hundred and ninety two of
432 skeletal dysplasia-causing gene-orthologs21 (~91%) were
actively expressed in osteocytes supporting a key role for
osteocytes in skeletal disease. Mutations in 90 genes present in
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the osteocyte transcriptome signature cause 168 of the
612 skeletal disorders annotated in the nosology of genetic
skeletal disorders21 (3-FE, P= 2.4 × 10−22, Fig. 6a and Sup-
plementary Data 9). Nevertheless, osteocyte transcriptome
signature genes were not uniformly involved in all of the ske-
letal disease groups (Fig. 6b). For example, the osteogenesis
imperfecta and decreased bone density group was one of the
groups most enriched with signature genes (18/33 casual genes
in the signature, P= 7 × 10−13). Indeed, all 19 genes known to
cause osteogenesis imperfecta (OI)57–59 were actively expressed
in osteocytes and 14 were present in the osteocyte tran-
scriptome signature (Fig. 6c). Analysis of the temporal
expression pattern of the 19 OI-genes in the IDG-SW3 in vitro
cell differentiation dataset showed that 16 (84%) were more
highly expressed in late osteocytes relative to earlier stages in
differentiation, including 13 osteocyte transcriptome signature
genes (Supplementary Fig 12a). OI-genes were also more highly
expressed in osteocytes isolated by laser-capture microdissec-
tion compared to bone-lining cells and osteoblasts, as well as
other tissues (Supplementary Fig 12b, c). Furthermore, 13 of the
14 OI-genes present in the osteocyte transcriptome signature
were up-regulated in osteocytes during skeletal growth but
down-regulated at skeletal maturity, suggesting that these genes
may have a role in osteocytes during bone development (Sup-
plementary Fig 12d). Together these data demonstrate that the
osteocyte transcriptome signature is highly enriched for genes
that cause rare monogenic skeletal disorders. Thus, interroga-
tion of the osteocyte transcriptome signature may inform
candidate gene prioritisation in the study of families with rare
bone disease in which the genetic basis is unknown.

The osteocyte transcriptome signature is enriched for human
orthologs associated with skeletal disease susceptibility. Finally,
we hypothesised that human orthologs of osteocyte transcriptome
signature genes, identified in mice, are also enriched for genes
associated with susceptibility to common skeletal diseases, such as
osteoporosis and OA. To test this, the relationship between
genetic variations surrounding human orthologs of osteocyte
transcriptome signature genes and quantitative ultrasound-
derived heel bone mineral density (eBMD) in a sample of
362,924 individuals from the UK Biobank (UKBB) cohort25 was
examined using two methods: stratified linkage disequilibrium

score regression (LDSC-SEG)60,61 and competitive gene set
enrichment analysis62. LDSC-SEG analysis provided robust evi-
dence of enrichment, demonstrating that genomic regions sur-
rounding human osteocyte transcriptome signature gene
orthologs contribute disproportionately to the SNP heritability of
eBMD. The osteocyte transcriptome signature gene annotation
(±20 kb) spanned 5.1% of the genome (i.e. 65,332/1,142,435
SNPs) and explained ~12.5% (SE= 0.012, P= 1.6 × 10−7) of the
total estimated SNP heritability of eBMD (estimated previously25

at h2SNP= 0.36, SE= 0.017). This corresponded to a 2.2-fold
(SE= 0.21, P= 1.6 × 10−7) enrichment for per-SNP heritability
of eBMD.

Competitive gene-set analysis also detected strong enrichment
and showed that, on average, human orthologs of osteocyte
transcriptome signature genes exhibit stronger associations with
eBMD than non-osteocyte transcriptome signature genes (P=
1.8 × 10−13). Enrichment was largely attributable to significant
gene-level associations (P < 2.6 × 10−6) of 259/992 osteocyte
transcriptome signature orthologs (26%) with eBMD (Fig. 7a
and Supplementary Data 10). Mutations in 36 of these genes, with
gene-level associations, cause monogenic skeletal dysplasia in
humans (5.1-fold enrichment, P= 5.1×10−16; Supplementary
Data 10). We observed robust associations between SOST,
DMP1 and MEPE (PJOINT < 2 × 10−129, PJOINT= 2 × 10−27 and
PJOINT= 2 × 10−86, respectively), genes enriched for expression
in osteocytes. Given that these genes were reported as the closest
gene to a lead variant in previous GWAS of eBMD25, we next
investigated whether osteocyte transcriptome signature genes
occurred nearest to lead variants more often than expected by
chance. 110 osteocyte transcriptome signature orthologs were the
closest genes to conditionally independent lead eBMD variants
(2.8-fold enrichment, P= 2.4 × 10−23) (Fig. 7a and Supplemen-
tary Data 10). These included 9 of the top 26 genes most enriched
for expression in the osteocyte transcriptome signature (SOST,
MEPE, NGEF, WNT1, ACKR3, TGFB2, SEMA3E, IRX5 and
DMP1). Finally, we identified AUTS2 (PJOINT= 6 × 10−9) as an
osteocyte transcriptome signature gene that has not previously
been implicated by GWAS (i.e. not within 1Mb of a lead eBMD
variant), yet reached gene-wide significance in gene-level analysis
and caused structural and/or functional skeletal abnormalities
when deleted in mice (Fig. 5a–e). LDLRAD4 and CTTNBP2
(PJOINT= 2 × 10−20 and PJOINT= 2 × 10−87 respectively), which

Fig. 5 Deletion of osteocyte transcriptome signature genes affects bone structure and function. a The 26 osteocyte transcriptome signature genes with
outlier skeletal phenotypes in the Origins of Bone and Cartilage Disease (OBCD) database of single gene deletions in mice (outer ring). Deletion of genes in
blue affected bone structure, genes in brown affected bone function and genes in red both structure and function. Those annotated in either GO or MGI are
indicated. Genes in red have a significant outlier phenotype when deleted in knockout mice but are not annotated with skeletal function or phenotype in
either GO or MGI databases. The inner ring denotes the number of genes with (green) and without (grey) an outlier skeletal phenotype when deleted in
mice in the OBCD database. b Representative quantitative X-ray microradiographic images from the femurs (i) and vertebrae (ii) of adult, female wild-type
(WT), Auts2+/−, Cttnbp2−/−, Dact3−/− and Ldlrad4−/− mice (n= 6 mice per genotype). Scale bar= 1 mm. Dot plots illustrate individual parameters.
c Representative micro-CT images of trabecular (i) and cortical (ii) bone of adult, female wild-type (WT), Auts2+/−, Cttnbp2−/−, Dact3−/− and Ldlrad4−/−

mice (n= 6 mice per genotype). Scale bar= 100 µm. Dot plots illustrate bone volume as a proportion of tissue volume (BV/TV), trabecular number (Tb.
N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), cortical thickness (Ct.Th), internal endosteal diameter and bone mineral density (BMD).
d Representative micro-CT images showing large osteocyte lacunae (401–800 µm3) in tibia cortical bone from adult, female WT (n= 11), Auts2+/− (n=
6), Cttnbp2−/− (n= 6), Dact3−/− (n= 6) and Ldlrad4−/− (n= 4) mice. Scale bar= 100 μm. Graphs show osteocyte lacunae number per bone volume (Lc.
N/BV) and distribution of lacunae volumes (Lc.V) in WT mice (median and 95% confidence intervals). Violin plot shows distribution of Lc.V in the four
knockout mouse lines compared to WT and graphs show relative frequency distribution of Lc.V in Cttnbp2−/− and Ldlrad4−/− mice compared to WT.
Kruskall–Wallis test followed by Dunn’s multiple comparison adjustment (two-sided) **P < 0.01, ****P < 0.0001. e Load displacement curves from caudal
vertebrae compression testing in adult female WT, Auts2+/−, Cttnbp2−/−, Dact3−/− and Ldlrad4−/− mice. Dot plots show yield load, maximum load and
stiffness. For each variable in b, c and e the mean (solid centre lines), ±1.0 SD (dotted lines) and ±2.0 SD. (grey boxes) for WT mice (n= 320) are shown.
Individual data-points for each parameter in Auts2+/-, Cttnbp2−/−, Dact3−/− and Ldlrad4−/− lines are shown as green, pink, blue and orange dots,
respectively (n= 6 biologically independent mice per genotype). The mean value for each individual phenotype parameter is indicated by a solid bold line.
Mean parameters that lie greater or less than two standard deviations from the WT reference mean are considered outliers and are indicated by an asterisk
(*), coloured according to the individual mouse line.
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occur within 1Mb of previously identified eBMD loci, were also
shown to result in an abnormal skeletal phenotype when deleted
in mice. Together, this demonstrates that variants in osteocyte
transcriptome signature gene-orthologs account for a significant
proportion of the genetic variance that regulates eBMD and can
help identify genes that affect skeletal structure and function.

Since changes in subchondral bone structure and mineralisation
are pathognomonic in the development of OA63 we also sought to
determine whether variants in osteocyte transcriptome signature
orthologs were associated with OA in humans. A similar analytical
approach was applied to 77,052 individuals with OA and 378,169
control subjects drawn from the UKBB and arcOGEN resources64.
LDSC-SEG analysis60,61 showed that loci associated with human
osteocyte transcriptome signature gene orthologs contribute to
the heritability of OA at any site (P= 1.6 × 10−7), at the knee

(P= 1.9 × 10−6), hip (P= 4.5 × 10−3) and hip and/or knee (P=
3.2 × 10−6). Variants associated with osteocyte transcriptome
signature orthologs explained ~11.6% (SE= 0.011) of the total
estimated SNP heritability of OA at any site. Competitive gene-set
analysis62 also showed that human orthologs of osteocyte
transcriptome signature genes had stronger associations with
OA than non-osteocyte genes (OA at any site (P= 9.1.6 × 10−3),
at the knee (P= 7.2 × 10−3), hip (P= 3.0 × 10−3) and hip and/or
knee (P= 6.6 × 10−2). Enrichment was largely attributable to
significant gene-level associations (P < 2.6 × 10−6) of a small
number of osteocyte transcriptome signature orthologs (40/992,
~4%) with OA (Fig. 7b and Supplementary Data 11). Mutations in
eight of these genes cause monogenic skeletal disorders in humans
(7.4-fold enrichment, P= 9.5 × 10−6) (Supplementary Data 11).
In all, 13/40 osteocyte transcriptome signature orthologs were the
closest genes to conditionally independent lead OA variants (4-
fold enrichment, P= 1.2 × 10−5), indicating osteocyte transcrip-
tome signature genes occur nearest to lead variants more often
than expected by chance (Fig. 7a and Supplementary Data 11).
Whilst a number of these genes are also expressed in
chondrocytes, others such as MEPE, TSKU, SEMA3F, SEMA3G
and SEMA7A (PJOINT < 2 × 10−6 in all cases, Fig. 7b) are not65,
indicating their contribution to OA may at least in part be due to
their role in osteocytes. Together, these data show that osteocyte
transcriptome signature genes are not only associated with
osteoporosis susceptibility, but may also identify genes associated
with OA susceptibility.

Discussion
Osteocytes are critical cellular regulators of the skeleton. To
understand the molecular pathways that control the osteocyte
network we generated a map of the osteocyte-enriched tran-
scriptome using data derived from long bones at differing ana-
tomical locations, various ages and both sexes and defined an
osteocyte transcriptome signature that represents a profile of
genes enriched for expression in osteocytes. The majority of these
genes have not previously been shown to have a role in bone,
including genes that resulted in abnormal structural and func-
tional skeletal phenotypes when deleted in mice. This included
novel, non-coding genes, that were restricted in expression to
osteocytes, suggesting an additional, unappreciated, level of
control over osteocyte function. Integrating this map with
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orthogonal gene expression datasets13,15,16,28,50, functional
skeletal phenotyping data66, GWAS datasets25,64, and the nosol-
ogy of genetic skeletal disorders21, provided new understanding
of the fundamental role of the osteocyte in skeletal health and
disease.

First, we showed the osteocyte transcriptome is conserved
among bones from different anatomical locations, yet
Homeobox genes demarcate osteocytes obtained from upper
and lower limbs. This indicates that the molecular postcode in
osteocytes established during embryonic limb patterning per-
sists in the adult osteocyte, suggesting that their function
requires information on their anatomical location. In support of
this, site-specific patterns of Homeobox genes in adult skeletal
progenitors and cells lining bone have been implicated in bone
repair67,68, and the regulation of bone mass69. Second, we
demonstrate the osteocyte transcriptome is regulated differen-
tially between the sexes but only in adulthood, suggesting that
osteocyte function during skeletal growth and development is
similar in males and females. The adult sexual dimorphism
involves genes that control perilacunar remodelling, a process
associated with rapid calcium release from the skeleton during
lactation, and glucocorticoid-induced bone loss15,37,70. This
expands our understanding of the genes that control this
pivotal process. Third, the osteocyte transcriptome signature
is enriched with genes that control axonal guidance and neu-
ronal network formation, which are up-regulated early in
osteocyte differentiation. The remarkable physical and mole-
cular similarity between the osteocyte network and neuronal
networks indicates that osteocytes have repurposed neuronal
molecular control pathways to facilitate osteocyte network
formation and function. Leveraging knowledge from neuronal
networks is likely to accelerate understanding of how the
osteocyte network forms and functions at a molecular level.

An important challenge facing genome-wide association stu-
dies of skeletal diseases is how to map genome-wide significant
variants reliably to their causal genes. Integrative analysis of the
osteocyte transcriptome signature with human genetic association
studies of osteoporosis identified new candidate causal genes that
may be associated with skeletal disease susceptibility. These
included AUTS2, CTTNBP2 and LDLRAD4, whose deletion in
mice results in abnormal skeletal phenotypes. AUTS2 and
CTTNBP2 are regulators of neuronal cell migration and
branching52,56, further highlighting the importance of neuron-
like pathways in osteocyte network function and in the control of
the skeleton. This strategy also identified new candidate loci
associated with OA, suggesting that expression of these genes in
osteocytes may contribute to the remodelling of subchondral
bone, which is critical in the pathogenesis of OA71. In addition to
complex diseases, analysis of the osteocyte transcriptome sig-
nature also revealed that genes known to cause monogenic ske-
letal disorders are enriched in osteocytes. Enrichment was most
striking among the osteogenesis imperfecta and decreased bone
density group, which is a group characterised by bone fragility.
Indeed, the majority of the genes that cause OI are found in the
osteocyte transcriptome signature. These genes are involved in
matrix synthesis and transcript levels were as high or in some
cases higher than osteoblasts or bone-lining cells in the ortho-
gonal dataset analysis. Whilst these genes are actively transcribed
in osteocytes they may not translated until required, for example
during perilacunar remodelling. Moreover, these results suggest
that, in addition to the canonical model of OI as a disease of
osteoblasts, the pathogenesis of OI may also crucially involve the
osteocyte network. This conclusion is supported by studies
showing the osteocyte network is dysregulated in patients with
OI72,73. Together this illustrates that linking knowledge of the
osteocyte transcriptome signature and functional phenotyping in
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mice, with GWAS and/or the nosology of genetic skeletal dis-
orders, identifies genes associated with skeletal disease in humans
and helps prioritise genes for further analysis.

This study has limitations. The bone samples investigated are
long bones and we have not included spine or calvaria. Samples
include both cortical and cancellous bone, although cancellous
bone represented only 1–2% of the total bone tissue sampled,
suggesting the transcriptome data mainly represents genes tran-
scribed in cortical osteocytes. Furthermore, we cannot exclude the
possibility that contaminating cells may contribute to the
osteocyte-enriched transcriptome, although careful tissue pro-
cessing and validation using orthogonal datasets strongly suggests
the dataset is restricted to genes that are enriched in osteocytes
and highly unlikely to include genes expressed only in minor
populations of non-osteocyte cells. Lastly, although this study has
analysed the trancriptome of osteocytes it has not determined
protein expression, nevertheless, skeletal phenotyping of mice
with deletions of identified genes have significant skeletal phe-
notypes suggesting they are translated and functionally important
in the skeleton.

Diseases affecting skeletal development, maintenance and
repair result in a considerable health burden74 and provide the
imperative to understand the pivotal role of osteocytes in ske-
letal physiology and pathophysiology. The osteocyte-enriched
transcriptome map and osteocyte transcriptome signature,
reported here, provide major new insights into the genes and
molecular pathways that regulate osteocyte differentiation,
osteocyte network formation and mature osteocyte function
and are highly enriched for genes implicated in rare and
common polygenetic skeletal disease. Thus, defining the
osteocyte transcriptome signature represents a critical step
forward in understanding the fundamental processes under-
lying skeletal physiology and the cellular and molecular
aetiology of human skeletal disease.

Methods
Transcriptome sequencing mouse cohorts. Transcriptome sequencing and
morphological analyses were performed on wild-type, immune-competent,
C57BL6/NTac mice. The Garvan/St Vincent’s Animal Ethics Committee approved
all animal experiments (Protocol ID 16/01 and 12/44). Mice were maintained in a
specific pathogen-free facility and group-housed (2–5 animals per cage) with
continuous access to food and water. None of the mice had noticeable health or
immune status abnormalities, and were not subject to prior procedures. Three
experimental cohorts were used:

Bone comparison cohort. Bone samples were collected from left and right tibiae,
femora and humeri of eight 16-week-old male C57BL6/NTac mice as detailed in
the Sample collection and in situ osteocyte isolation section below (n= 16 per bone
type, 48 samples total). From each mouse, all samples were collected and processed
within 20 minutes of killing. Histology and µCT analysis were performed on all
samples collected from the right limbs as detailed in the Morphological analysis of
bone samples section below (n= 8 per bone type, 24 samples total). Bones from the
left limbs were processed to obtain in situ isolated osteocytes as detailed in the
Sample collection and in situ osteocyte isolation section below. Transcriptome
sequencing was performed on all samples collected from the left limbs as detailed
in the RNA extraction, transcriptome library preparation and RNA-sequencing
section below (n= 8 per bone type, 24 samples total). Samples were sequenced to
an average depth of ~30 million reads per sample.

Skeletal maturation cohort. Left and right humeri were collected from 4, 10, 16
and 26-week-old female and male C57BL6/NTac mice (n= 5 per sample type,
80 samples in total). Breeding was stratified so samples from each age could be
collected within a single 36-h time period. Samples were collected in groups of
eight mice (one from each time point in each sex) to avoid confounding batch
effects. All samples were collected within 15 min of killing. Intact bones from the
right limb were used for morphological analysis by dual energy X-ray absorp-
tiometry (DXA) as detailed in the Morphological analysis of bone samples
section below. Transcriptome sequencing was performed on all samples col-
lected from the left limb as detailed in the RNA extraction, transcriptome library
preparation and RNA-sequencing section below (n= 5 per bone type, 40 sam-
ples total). Samples were sequenced to an average depth of ~25 million reads per
sample.

Osteocyte enrichment cohort. Left and right humeri were collected from five 10-
week-old male C57BL6/NTac mice (n= 5 per sample type, 10 samples total). All
samples were collected and processed within 20 min of killing. Bones from the
left limb were processed to obtain in situ isolated osteocytes as detailed in the
Sample collection and in situ osteocyte isolation section below. Bones from the
right limb were processed in an identical manner but not flushed with PBS or
centrifuged so as to retain the bone marrow. Transcriptome sequencing was
performed on all samples as detailed in the RNA extraction, transcriptome
library preparation and RNA-sequencing section below (n= 5 per sample type,
10 samples total). Samples were sequenced to an average depth of ~20 million
reads per sample.

Sample collection and in situ osteocyte isolation. Mice were killed by CO2

asphyxiation and cervical dislocation. To isolate osteocytes within the bone sam-
ples, soft tissue including muscle, ligaments, tendon and periosteum were removed.
Diaphyseal bone from the tibia was isolated cutting at the fibula junction and then
1 mm distal to the proximal and distal growth plates, and from the femur by
cutting the bone immediately proximal to the third trochanter and then 1 mm
proximal to the distal growth plate. The humeri were cut immediately proximal to
the deltoid tuberosity and then 1 mm proximal to the epicondyles before com-
pletely removing the deltoid tuberosity along the bone shaft. Bone marrow from
each bone was removed by first flushing with PBS until visibly clean and then
centrifugation at 14,000×g for 15 s. Bones were cut into pieces and snap frozen in
liquid N2 for storage.

Morphological analysis of bone samples
Dual energy X-ray absorptiometry. To examine changes in bone structure in the
Skeletal maturation cohort, bones were scanned by DXA. Whole femoral length,
bone mineral density (BMD) and bone mineral content (BMC) were measured in
excised left femora using a Lunar Piximus II dual X-ray absorptiometer (DXA) (GE
Medical Systems). Femora were scanned with tibiae attached and the knee joint in
flexion to ninety degrees to ensure consistent placement and scan of the sagittal
profile.

Micro-CT (µCT) visualisation of bone samples. Bones were scanned using a Skyscan
Model 1172 microCT scanner (Bruker) at 50 kV, 200 mA with a 0.5-mm alumi-
nium filter at a pixel size of 4.3 µm. Images were captured every 0.4° through 180°,
reconstructed and cortical and cancellous bone regions were defined and bone
volume analysed using NRecon and CTAn software (Bruker, http://bruker-microct.
com/products/downloads.htm). Three-dimensional models were created using the
Drishti-2 tool75 (https://github.com/nci/drishti).

Histology. Histological analysis was performed on bone samples from the Bone
Comparison Cohort to establish the efficacy of the osteocyte isolation methodol-
ogy. Samples were decalcified in 0.5 M EDTA at 37˚C for 24 hours and embedded
in paraffin. In total, 3 μm sections (parasagittal plane) were cut on a RM2265
microtome (Leica), mounted on superfrost plus (Thermo Fisher Scientific,
4951PLUS4) and stained with Mayer’s hematoxylin and eosin (Sigma, MHS1).
Images of each section were captured using ×10 and ×20 objectives with an Aperio
Scanscope slide scanner (Leica) and processed by Aperio Imagescope (Leica,
https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope)
and Fiji/ImageJ software76 (https://fiji.sc).

Tartrate resistant acid phosphatase staining. EDTA-decalcified bone sections
(3 μm) were deparaffinized, hydrated and incubated in 1M Tris-HCl pH9.4 buffer
at 37 °C for 30 min. Sections were then stained for Tartrate Resistant Acid Phos-
phatase (TRAP) by incubation in 1M sodium acetate (pH 5.2), Naphtol-ASBI-
phosphate, and sodium tartrate for 10 min at 37 °C. Sections were then rinsed in
distilled water and counterstained with hematoxylin for 15 s.

Histomorphometry. Histomorphometric assessment of cell-types in cortical bone
and on the endocortical surfaces were measured using Osteomeasure software
(version 3.2.1.8, Osteometrics Inc). Cell numbers were measured over a 5-mm
length of both anterior and posterior endocortical surfaces in each bone sample.
Measurements began 0.25 mm from the first field of view below the proximal
end of each sample. Bone-cell-types quantified included osteoblasts/bone-lining
cells, TRAP positive osteoclasts and osteocytes. Cells that could not be clearly
defined as osteocytes, osteoblasts or bone-lining cells were defined as other cell-
types.

RNA extraction, transcriptome library preparation and RNA-sequencing.
TRIreagent (Sigma-Aldrich, T9424) was added directly to frozen bone samples and
homogenised using a Polytron hand-held homogeniser (PT1200E, Kinematica).
RNA was isolated according to the manufacturers protocol and cleaned with an
additional ethanol-precipitation step. RNA yield was determined using a Nanodrop
(Thermo Fisher Scientific, 2000) and RNA integrity determined using the Bioa-
nalyser RNA 6000 Nano Kit (Agilent Technologies, 5067-1511). Total RNA (250
ng) was depleted of ribosomal RNA using RNaseH (Epicentre) and ribosomal RNA
targeting oligonucleotides based on a protocol by Adiconis et al., 201377. Briefly,
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total RNA, spiked with External RNA Controls Consortium (ERCC) internal
controls (Thermo Fisher Scientific, 4456740), was incubated with ribosomal-RNA
targeting oligos (sequences reported in Adiconis et al.77) and RNaseH to degrade
the rRNAs before the oligos were removed with DNase treatment (Thermo Fisher
Scientific, AM2238). RNA was re-purified using magnetic beads according to the
manufacturers protocol (Beckman Coulter Genomics, A63987). Total-RNA
stranded transcriptome libraries were prepared using the TruSeq Stranded Total
RNA LT Sample Prep Kit starting from the fragmentation step in the manu-
facturers protocol (Illumina, RS-122-2201). Paired-end sequencing (2 × 125-bp)
was carried out on a HiSeq 2500 instrument (Illumina) at the Kinghorn Center for
Clinical Genomics, Garvan Institute, Sydney, Australia.

De novo transcriptome assembly and filtering. Sequencing read data was
pooled for each bone type in the Bone Comparison Cohort (described above)
and de novo transcriptome assembly performed using two different assembly
strategies: ab initio, using Trinity78, and genome-guided, using Stringtie79.
Only multi-exon (≥2 exons) transcripts assembled by both methods were
retained before transcripts assembled in each of the three bones were pooled
using Cuffcompare80 to generate a non-redundant union set of assembled
transcripts. Assembled transcripts with splice patterns matching those in
RefSeq81 or GENCODE-M582 transcriptome annotations were removed to
identify novel transcripts. Remaining transcripts were then filtered based on
exon length. Briefly, the mean log2-exon-length ±2 standard deviations of
GENCODE-M5 annotated exons was calculated. Assembled transcripts con-
taining one or more exons outside of this range were removed. The protein-
coding potential of the remaining transcripts was assessed using CPAT83

(http://lilab.research.bcm.edu/cpat). To annotate structures arising from novel
loci in the genome, those overlapping known annotated transcripts located on
the opposite strand were given a novel_antisense biotype and given gene IDs
beginning with Obcda, while transcripts located between known genes were
given the novel_intergenic biotype and assigned gene IDs beginning with
Obcdi. Novel transcripts for both known and novel genes possess transcript IDs
begin with TRINITY. These novel, multi-exon transcripts were then con-
catenated to the GENCODE-M5 annotation prior to read alignment. Sub-
sequent to this analysis, new gene structures have been predicted. Some contain
splice junctions that overlap novel transcripts reported here. In this case, the
GENCODE-M13 gene name is contained in brackets beside the unique
assigned gene ID.

Defining the genes actively expressed in osteocytes. Transcriptome data were
trimmed of low-quality reads and adaptor sequences using Trim Galore (https://
github.com/FelixKrueger/TrimGalore) and aligned to the GRCm38.p3 mouse
genome, guided by the GENCODE-M5 transcriptome annotation plus the novel
assembled transcripts described above, using STAR84 and quantified using
RSEM85. A threshold of gene activity was calculated based on the bimodal
distribution of normalised gene expression as described in Hart et al27. Briefly,
FPKM values were log2-normalised (nFPKM), omitting genes with FPKM= 0.
The kernal density estimate (KDE) of these values was then calculated (using
Scotts rule of thumb for bandwidth) and the maximum KDE value determined.
A Gaussian distribution was then fitted, with the mean (µ) at the KDE maximum
and the standard deviation (SD) based on normalised expression values greater
than µ. The nFPKM values were then transformed to zFPKM using zFPKM=
(nFPKM−µ)/SD. Active expression in a sample was defined as those with >−2.6
zFPKM, the conservative range suggested in the original publication27. This
generated sample-specific thresholds for gene activity which are listed in Sup-
plementary Data 1. Genes were considered actively expressed in a given bone
sample type if they were above the sample-specific gene activity threshold in all
biological replicates. The numbers of active genes in each bone type were classed
according to the gene biotype defined in the GENCODE-M5 transcriptome
annotation.

Orthogonal validation of gene expression in osteocytes. To validate the active
expression of genes in the osteocyte network and to ensure the genes identified
were not derived from minor populations of non-osteocytic contaminating cells we
used 3 publicly available datasets;

Osteocytic cell-line. This transcriptome sequencing dataset profiled data from the
IDG-SW3 mouse osteocyte cell line, an in vitro model of osteoblast-like cell to
osteocyte differentiation50 (ArrayExpress accession E-GEOD-54783 https://www.
ebi.ac.uk/arrayexpress/experiments/E-GEOD-54783). These data were originally
published as part of a temporal study of osteocyte differentiation. Data from days 3,
14 and 35 represent osteoblast, early osteocyte and mature osteocyte stages,
respectively86. Raw data were aligned and quantified using the GENCODE-M5
transcriptome annotation plus the novel assembled transcripts. Genes were con-
sidered to be expressed in this dataset if they had a read count ≥10 in each replicate
(n= 3) in every replicate of early or mature osteocytes.

Laser-capture micro-dissected osteocytes. This microarray dataset profiled gene
expression in laser-capture micro-dissected osteoblasts, bone-lining cells and

osteocytes87 (GEO accession GSE71306). These data were originally published as
part of an investigation into the bone-cell response to Sclerostin-antibody treat-
ment. Only untreated control samples were used in this analysis. As this dataset
was generated from rat bone, mouse-orthologs of rat genes were identified using
the biomaRt package88. Background expression and control probes were filtered
from the data and mean signal intensity calculated for duplicate probes corre-
sponding to a single gene using the oligo and affycoretools packages89,90. Genes
present in each sample were determined using the Wilcoxon signed rank-based
gene expression detection algorithm (MAS5calls function from the affy package91).
Genes were considered to be expressed in this dataset if they were present in more
than 50% of osteocyte samples (>20/40).

Collagenase-digested osteocytes. This microarray dataset profiled gene expression in
osteocytes from primary bone tissue, with cells removed from the bone surface by
flushing, centrifugation and serial collagenase digestions15 (ArrayExpress accession
E-GEOD-23496 https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-23496).
This dataset was originally published in a study investigating gene expression
changes in the osteocyte network in virgin mice, mice during lactation and mice
post lactation. Background expression and control probes were filtered from the
data and mean signal intensity calculated for duplicate probes corresponding to a
single gene using the oligo and affycoretools packages89,90. Genes present in each
sample were determined using the Wilcoxon signed rank-based gene expression
detection algorithm (MAS5calls function from the affy package91). Genes were
considered to be expressed in this dataset if they were detected in all replicates
(n= 3) of any experimental condition.

Analysis of the osteocyte transcriptome between skeletal sites
Gene activity. Gene activity in the Bone Comparison Cohort was defined as per the
methods section Defining the genes actively expressed in osteocytes. Genes
expressed above the sample-specific activity threshold in 8/8 replicates of either
tibiae, femora or humeri were considered active. Active genes were classed
according to gene biotype defined in the GENCODE-M5 transcriptome
annotation.

Correlation. The Pearson correlation between each sample was calculated based on
normalised counts of active genes in any bone type and plotted using the ggplot2
package92. The mean correlation between samples for each bone type comparison
is also reported.

Differential expression. Differential gene expression analysis between bones was
performed using the limma package93 on the voom-normalised94 counts of active
genes in the Bone comparison cohort. The topTreat function identified differen-
tially expressed genes with evidence of a log-fold change (LFC) > 0.5 between bone
types with a false discovery rate (FDR) corrected P < 0.05. Genes with expression
restricted to specific skeletal sites were active in at least one bone type (above the
sample-specific activity threshold in 8/8 replicates of a given bone type) and
inactive in another bone type (below the sample-specific activity threshold in 8/8
biological replicates).

Comparison with other organs and tissues
Gene activity. To compare the osteocyte transcriptome with transcriptomes from
other tissues, sequencing read data were obtained from Zhang et al.28 (ArrayEx-
press accession E-GEOD-54652 https://www.ebi.ac.uk/arrayexpress/experiments/
E-GEOD-54652). Gene activity was defined as per the methods section Defining
the genes actively expressed in osteocytes. This dataset contains 8 replicates of 12
tissues types collected for a single study under controlled conditions. Genes
expressed above the sample-specific activity threshold in 8/8 replicates of either the
adrenal gland, aorta, brown fat, brainstem, cerebellum, heart, hypothalamus, kid-
ney, liver, lung, muscle or white fat were considered active. This identified the
active genes in 12 non-skeletal organs and tissues.

PCA. To compare the transcriptome of osteocytes and other tissues, FPKM of
all genes active in any tissue type were quantile-normalised and scaled before
principal components (PCs) were calculated and used to cluster samples. Fitting of
95% CI ellipses and plotting of samples using the first two PCs was performed with
ggplot2.

Gene specificity. To examine the specificity of gene expression in osteocytes
relative to these other tissues we used the Tau specificity index29. Briefly, median
log2FPKM values were calculated for each tissue for all genes actively expressed
in the osteocyte transcriptome (pooling samples from the three skeletal sites to
get a single median value for osteocytes). These values were quantile-normalised
and Tau calculated for each gene in each tissue using the tispec R-package
(https://rdrr.io/github/roonysgalbi/tispec). Genes were classified as either low-
specificity (Tau < 0.15), moderate-specificity (0.15 ≤ Tau ≤ 0.85) or high specifi-
city (Tau > 0.85). The density distribution of Tau in each tissue was plotted with
ggplot2, using default axis scaling to ensure visualisation of density distribution
in each tissue.
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Defining changes in the osteocyte transcriptome with skeletal maturation
Gene activity. Gene activity in the Skeletal Maturation Cohort was defined per the
methods section Defining the genes actively expressed in osteocytes. Genes
expressed above the sample-specific activity threshold in 5/5 replicates of any age in
either sex were considered active. Active genes were classed according to gene
biotype defined in the GENCODE-M5 transcriptome annotation.

PCA. PCA was performed on the Skeletal Maturation Cohort between female
samples (any age), male samples (any age) and sexes at each age (4, 10, 16 and 26-
weeks-old). For each comparison, PCs were calculated based on the scaled-FPKMs
of genes active in any sample type, with the first two principal components then
used to cluster samples. Significant differences between centroids was determined
by Hotellings t-test. Fitting of 50% CI ellipses and plotting was performed using the
ggplot2 R-package.

Weighted gene co-expression network analysis (WGCNA). To identify clusters of
genes with highly correlated patterns of gene expression during skeletal maturation,
WGCNA was performed on the normalised counts of genes expressed in either sex
at any age (4, 10, 16 or 26-weeks-old) using the WGCNA package95. Briefly, gene-
wise connectedness was calculated using the bi-weight mid-correlation function
(bicor) across all 40 samples in the Skeletal Maturation Cohort. A soft-thresholding
power of eight was calculated as gene connectedness resembled a scale-free net-
work (the scale-free topology model fit R > 0.9). Next, a weighted, signed network
adjacency matrix was calculated, raising the gene-wise correlation coefficient to the
soft-thresholding power with a 10% outlier threshold (maxPOutliers= 0.1). A
topological overlap matrix was constructed based on network adjacency and cal-
culated matrix dissimilarity. Hierarchical clustering was performed on the dis-
similarity matrix to group genes based on their connectedness and clusters of
highly connected genes identified using the hybrid cutreeDynamic R-function96.
Clusters with correlated patterns of expression were merged (cut-height=0.25)
leaving 7 clusters (denoted by colours as per WGCNA convention) of highly
connected genes with distinct patterns of expression. Genes that were not corre-
lated with each other or with genes in other clusters were allocated to an 8th Grey
cluster.

Cluster characterisation. Clusters with expression patterns significantly associated
with variation in age, sex or both age and sex were then identified. Briefly, the
pattern of gene expression within each WGCNA cluster were summarised into
eigengene values (EVcluster), defined as the first PC of cluster gene expression
variance. Line plots produced with Prism (GraphPad v7, https://www.graphpad.
com/scientific-software/prism) were used to visualise the mean and SD of EV in
male and female mice. Three linear models were fitted to each cluster (EVcluster ~
Age, EVcluster ~ Sex, EVcluster ~ Age+ Sex+Age × Sex) using the lm function of the
stats R-package. The goodness-of-fit of each model was tested with the Bayesian
Information Criterion (BIC), with the lowest value across the three models taken to
be the optimum for each cluster. The adjusted-R2 (adj-R2) calculated by the lm
function was used to evaluate the strength of each models’ association with EV,
with adj-R2 > 0.6 considered a strong association. For genes in each cluster,
expression in osteocytes was validated in independent, orthogonal datasets, as per
method section Orthogonal validation of gene expression in osteocytes. Sig-
nificantly enriched Gene Ontology (GO) biological processes40, Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways97 and Disease Ontology (DO)
terms98 in each cluster were identified using the ClusterProfiler and DOSE
packages99,100 (Bonferroni-corrected P < 0.05).

Analysis of Magenta cluster genes. Heatmaps of Magenta Cluster gene expression
and line plots of selected genes (top 20 most strongly correlated with EVMagenta)
were generated using the mean of scaled and normalised gene expression counts,
calculated across all ages in both sexes. Heatmaps were produced using the gplots
package101 and line plots produced with Prism (GraphPad v7). Semantically
similar GO terms were identified within the GO biological processes significantly
enriched in the Magenta Cluster (Bonferroni-corrected P < 0.05) using the ReViGO
webtool102 (http://revigo.irb.hr/). Briefly, redundant GO terms (similarity > 0.9)
were removed and multidimensional scaling (MDS) coordinates calculated based
on the SimRel semantic similarity algorithm. MDS coordinates were then used to
identify clusters of semantically similar GO terms using the mclust package103. The
optimum number of clusters (4) was selected among models with unequal variance
using the Bayesian Information Criterion (BIC). Bar plots were produced with
ggplot2. Expression of top-ranked Magenta genes in osteocytes was assessed using
orthogonal datasets described in method section Orthogonal validation of gene
expression in osteocytes. To determine whether the Magenta Cluster identified
genes associated with perilacunar remodelling, their expression was examined
during lactation in the Collagenase-digested osteocytes microarray dataset15

(ArrayExpress accession https://www.ebi.ac.uk/arrayexpress/experiments/E-
GEOD-23496). Eighty-four of the 95 Magenta Cluster genes were represented on
the microarray. Competitive gene set testing accounting for inter-gene correlation
was performed on each skeletal maturation cluster using the CAMERA function of
the limma package104. Tukey boxplots of gene expression during lactation were
generated for each cluster based on the mean zscores of normalised probe intensity,
calculated across all conditions.

Identification of osteocyte-enriched genes. Genes enriched in osteocytes were
identified by comparing gene-counts between the samples of isolated osteocytes
and samples retaining bone marrow, described in the Osteocyte enrichment cohort.
Gene activity in the Osteocyte enrichment cohort was defined as per the methods
section Defining the genes actively expressed in osteocytes. Genes expressed above
the sample-specific activity threshold in 5/5 replicates of either condition were
considered active. Counts for active genes were normalised by library size only and
the gene-wise log2-fold change (LFC) in normalised read count was calculated
between conditions. The density distribution of LFC values was calculated using
Scotts rule of thumb for bandwidth. This was plotted to reveal multiple local
maxima at different levels of osteocyte enrichment. Genes were grouped within
these component populations using a Gaussian Mixture Model (GMM) that was
fitted to the LFC density distribution between conditions. The optimum number of
components (4) was determined using the BIC among models with unequal var-
iance. K-means clustering (k= 4) was then used to determine initiation parameters
for Expectation-Maximization fitting of the four component GMM using the
mixtools R-package105. Gene ontology analysis was performed on the top 1000
genes in each cluster, as ranked by posterior probability, using the ClusterProfiler
R-package99. An enrichment threshold was calculated at two standard deviations
above the mean LFC of the second most enriched GMM component (Component
2) to exclude genes likely belonging to suboptimal components. This identified an
empirically determined enrichment threshold= 1.63 LFC. Confidence intervals
(95%-CI) of the mean LFC for individual genes were then calculated. Genes with a
lower LFC-95%-CI above the enrichment threshold were deemed significantly
enriched in osteocytes. Scatter plots, GMM diagrams and density plots were
visualised using ggplot2.

Definition of an osteocyte transcriptome signature. Osteocyte-enriched genes
with significantly higher expression in either blood, bone marrow or skeletal
muscle relative to osteocyte-enriched bone tissue (P < 0.05) were identified using
differential gene expression calculations associated with the publicly available data
reported by Ayturk et al.13. Volcano plots were generated using the ggplot2 R-
package. The osteocyte transcriptome signature was defined as: (1) Genes actively
expressed in osteocytes from any of the Bone comparison cohort, Skeletal
maturation cohort or Osteocyte enrichment cohort sample types (detailed in sec-
tion defining the genes actively expressed in osteocytes) AND (2) Genes enriched
for expression in osteocytes relative to bone marrow cells (detailed in section
Identification of osteocyte-enriched genes) AND (3) Genes not significantly enri-
ched for expression in blood, bone marrow or muscle relative to bone. The spe-
cificity of osteocyte transcriptome signature gene expression relative to 12 other
non-skeletal tissues, was determined using the Tau specificity index for all sig-
nature genes calculated as per method section Comparison with other organs and
tissues. The histogram of signature gene specificity was generated using ggplot2. To
compare expression of osteocyte transcriptome signature genes in osteocyte with
other bone-cell types we used publicly available microarray dataset which profiled
gene expression in laser-capture micro-dissected osteoblasts, bone-lining cells and
osteocytes87 (GEO accession GSE71306). The design and preprocessing of this
dataset is described in method section Orthogonal validation of gene expression in
osteocytes – Laser-capture micro-dissected osteocytes. CAMERA gene-set analysis
identified significant differences in expression of signature genes between osteo-
cytes and osteoblasts, and between osteocytes and bone-lining cells. Tukey boxplots
were generated based on the mean of scaled, normalised probe intensity values for
signature genes in each cell-type using ggplot2.

Identification of osteocyte transcriptome signature genes known to affect the
skeleton. Osteocyte transcriptome signature genes associated with biological
processes important in the skeleton were identified using a curated list of GO
biological processes40 directly related to the skeleton106. Briefly, this list was con-
structed by filtering GO term descriptions using bone-related keywords. Osteocyte
transcriptome signature genes associated with any of the 116 manually curated
skeletal biological processes were then identified. Similarly, to identify osteocyte
transcriptome signature genes that cause a significant skeletal phenotype when
knocked out in mice, a list of mammalian phenotype (MP) terms related to the
skeleton was constructed. MP term definitions and descriptions were filtered using
bone-related keywords to identify skeletal MP terms. Screening the Mouse Genome
Informatics (MGI) database41 with skeletal MP terms identified mouse knockout
lines with significant skeletal phenotypes (conditional alleles were excluded).
Osteocyte transcriptome signature genes associated with a skeletal phenotype when
deleted in mice were then identified. Significant over-representation of osteocyte
transcriptome signature genes in each of these skeletal gene lists was tested under
the hypergeometric distribution (P < 0.05).

Osteocyte transcriptome signature enrichment and GO semantic similarity
clustering. Significantly over-represented GO biological processes and KEGG
pathways in the osteocyte transcriptome signature were identified using the clus-
terProfiler R-package99 (Bonferroni-corrected P < 0.05). Clusters of semantically
similar GO biological process in the osteocyte transcriptome signature were
identified as described in the section Detailed analysis of Magenta Cluster
genes. The optimum number of clusters (8) was selected among models with
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unequal variance using the BIC. Wnt signalling, PTH-signalling and Axon-
guidance pathway diagrams coloured by gene expression in osteocytes were
constructed using output from the Pathview R-package107 and data from the
KEGG database97.

Osteocyte transcriptome signature gene cluster identification during differ-
entiation. To examine the expression of osteocyte transcriptome signature genes
during osteocyte differentiation, we analysed publicly available transcriptome
sequencing data from an in vitro model of osteoblast-like cell to osteocyte
differentiation50 (ArrayExpress accession E-GEOD-54783). The design and pre-
processing of this dataset is described in method section Orthogonal validation of
gene expression in osteocytes – Osteocytic cell-line. Osteocyte transcriptome sig-
nature genes were clustered based on their expression in this dataset, with the
optimum number of clusters calculated based on the Calinski-Harabasz (CH) index
using the clues R-package108 and visualised using the heatmap.2 function of the
gplots R-package. Tukey boxplots of cluster expression in each differentiation stage
were generated based on the mean zscores of normalised gene expression calcu-
lated across all conditions using the ggplot2 R-package. Significant enriched GO
biological processes associated with genes in each cluster were identified using the
ClusterProfiler R-package (Bonferroni adjusted P < 0.05).

Novel osteocyte transcriptome signature gene analysis and deletion in mice.
Novel genes were identified based on the de novo transcriptome assembly pipeline
described in the De novo transcriptome assembly and filtering section above. The
gene structures of novel loci and read-data alignment diagrams were visualised
using Gvis109, using pooled read data from each bone type. Expression in other
tissues was determined using the dataset described in section Comparison with
other organs and tissues, with bar plots generated with ggplot2.

Obcdi008175−/−, Obcdi007392−/− and Obcdi042809−/− mice were produced by
the Mouse Engineering Garvan/ABR (MEGA) Facility (Moss Vale and Sydney,
Australia) by CRISPR/Cas9 gene targeting in C57BL/6 J mouse embryos using
established molecular and animal husbandry techniques110. Experiments
performed at the MEGA were approved by the Garvan/St Vincent’s Animal Ethics
Committee (Protocol ID 18/36). In each case, two single guide RNAs (sgRNAs)
were designed to target either side of the genomic DNA encoding the longest
predicted transcript and co-injected with polyadenylated Cas9 mRNA into C57BL/
6 J zygotes. Microinjected embryos were cultured overnight and introduced into
pseudo-pregnant foster mothers. Pups were screened by PCR and Sanger
sequencing of ear-punch DNA and founder mice identified that carried deletions
including the entire gene sequence. The targeted allele was maintained and bred to
homozygosity on a C57BL/6 J background. The details for each line are found in
Supplementary Table 1.

Skeletal phenotyping of these lines was performed as described below (section
Structural and functional skeletal phenotype analysis of mice with deletions of
osteocyte transcriptome signature genes) except that digital X-ray images were
recorded at a 10-μm resolution using a Faxitron UltraFocus (Faxitron Bioptics
LLC,Tucson, Arizona USA) operating in full manual mode at 22 kV.

Structural and functional skeletal phenotype analysis of mice with deletions
of osteocyte transcriptome signature genes. The Origins of Bone and Cartilage
Disease (OBCD) programme66 is undertaking a validated rapid-throughput mul-
tiparameter skeletal phenotype screen of mutant mouse lines generated by the
Wellcome Trust Sanger Institute as part of the International Mouse Phenotyping
Consortium (IMPC)111 and International Mouse Knockout Consortium
(IMKC)112 effort. The OBCD mouse studies were undertaken by Wellcome Trust
Sanger Institute Mouse Genetics Project (MGP) as part of the IMPC. This was
licensed by the UK Home Office (PPLs 80/2485 and P77453634) in accordance
with the 1986 Animals (Scientific Procedures) Act and approved by the Wellcome
Sanger Institute’s Animal Welfare and Ethical Review Body.

All mice generated by the MGP were produced (Tm1 alleles113, CRISPR
alleles114) and maintained on a C57BL/6NTac background. Mice were fed either a
Breeder’s Chow (Mouse Breeder Diet 5021, 21% kcal as fat, Labdiet, London, UK)
or a high fat diet (Western RD, 82,9100, Special Diet Services, Witham, UK) from
4 weeks of age. Prior to tissue collection, mice underwent a standardised broad
primary phenotype screen (https://www.mousephenotype.org/impress/
PipelineInfo?id=15)115. Detailed OBCD phenotyping methods were then
performed as below:

Origins of bone and cartilage disease phenotyping methods. Left lower limb and tail
samples from 16-week-old female wild-type and knockout mice were stored in 70%
ethanol at 4 °C, anonymized and randomly assigned to batches for rapid-
throughput analysis in an unselected fashion (n= 2–6 per line). Overall, 19 struc-
tural and functional skeletal parameters were determined for femur and vertebrae
samples from each mouse studied and compared to reference data (shown as a
range with mean and 1 and 2 standard deviations) obtained from 320 16-week-old
wild-type C57BL/6NTac female mice and collected in batches from across the
study time-course. Coefficients of variation for each skeletal parameter were: femur
BMC (2.0%) and length (2.1%); vertebra BMC (2.1%) and length (2.3%); trabecular
bone volume/tissue volume (18.5%), trabecular number (7.3%), trabecular

thickness (7.9%) and trabecular spacing (8.3%); cortical bone thickness (4.3%),
internal diameter (6.0%) and BMD (4.0%); femur yield load (13.2%), maximum
load (10.0%), fracture load (29.0%), stiffness (13.7%) and energy dissipated before
fracture (26.7%); and vertebra yield load (13.0%), maximum load (10.3%) and
stiffness (13.3%).

Digital x-ray microradiography. Soft tissue was removed from skeletal samples and
digital X-ray images were recorded at a 10-μm resolution using a Faxitron MX20
operating at 26 kV (Qados, Cross Technologies plc, Sandhurst, Berkshire, UK).
Cleaned lower limb and caudal vertebrae 6 and 7 were imaged together with 1 mm
diameter steel, aluminium and polyester standards. Bone lengths and relative bone
mineral content (BMC) were determined as previously described66. Briefly, femur
length and mean length of caudal vertebrae 6 and 7 were determined using ImageJ
and images calibrated using an X-ray image of a digital micrometre. To determine
relative BMC, 2368 × 2340 16-bit DICOM images were converted to 8-bit Tiff
images in ImageJ, the grey levels of the polyester and steel standards were defined
and the image stretched between the polyester (grey level 0) and steel (grey level
255) standards. Increasing gradations of mineralisation density were represented in
16 equal intervals by applying a pseudocolour lookup table to each image. For each
sample the median grey level (0-255) of the femur and caudal vertebrae 6 and 7 was
calculated.

Micro-CT analysis. Cortical and trabecular parameters were determined by micro-
CT using a Scanco μCT50 (Scanco medical, Zurich, Switzerland). Samples were
scanned at 70 kV, 200 μA, with a 0.5-mm aluminium filter, 1 s integration time, no
averaging, and images captured every 0.36° though 180° rotation. Reconstructions,
ROI selection and analyses were performed using Scanco software. Trabecular bone
parameters (trabecular bone volume as a percentage of tissue volume BV/TV,
trabecular number Tb.N, trabecular thickness Tb.Th and trabecular spacing Tb.Sp)
were calculated from scans at a voxel resolution of 5 μm in a 1-mm-long region of
the trabecular compartment beginning 100 μm proximal to the distal femoral
growth plate. Cortical bone parameters (cortical thickness Ct.Th, internal endosteal
diameter, and BMD) were calculated from scans at voxel resolution of 10 μm from
a 1.5 mm long region of mid-shaft cortical bone centred 56% along the length of
the femur distal to the femoral head.

Micro-CT analysis of osteocyte lacunae. Osteocyte lacuna parameters were deter-
mined by micro-CT using a Scanco μCT50 as described above. Osteocyte para-
meters (lacuna number Lc.N, lacuna volume Lc.V and lacuna sphericity Lc.Sph)
were calculated from scans at a voxel resolution of 1 μm from a 0.25-mm-long
region of mid-shaft cortical bone centred 60% along the length of the tibial from
the tibial plateau. The micro-CT segmentation threshold was optimised by ana-
lysing lacuna area (Lc.Ar and Lc.N) in longitudinal sections of cortical bone imaged
by both back scattered-election scanning-electron microscopy (considered the gold
standard) and micro-CT. Micro-CT data was reconstructed using a range of seg-
mentation thresholds and the distribution of Lc.Ar and Lc.N did not differ between
BSE-SEM and micro-CT at a segmentation threshold of 350 (equivalent to 851.7
mg HAcm−3). Therefore, a segmentation threshold of 350 was subsequently used
for the analysis of all samples. DICOM images were processed using Fiji76 and
lacunae rendered using its Volume Viewer (https://imagej.nih.gov/ij/plugins/
volume-viewer.html). Lc.V was determined using BoneJ Particle Analyzer116 and L.
Sph using Fiji 3D Shape Measure117. Following determination of Lc.N and Lc.N/
BV for each sample, the maximum equivalent number of lacunae were randomly
selected from each sample (2693) and the volume and sphericity distribution for
each mutant was compared to WT using Kruskall-Wallis analysis (GraphPad
Prism v8). Differences between mutant and WT were considered valid if significant
in all 10 permutations performed.

Biomechanical testing. Destructive 3-point bend tests and compression tests were
performed on an Instron 5543 materials testing load frame (Instron Limited, High
Wycombe, UK). Femur strength and toughness (yield load, maximum load, frac-
ture load, stiffness, % energy dissipated prior to fracture) were derived from
destructive three-point bend testing using a 50-N load cell and custom mounts
with rounded supports to reduce cutting and shear loads. Bones were positioned
horizontally with the anterior surface upwards between two mounting points with
a span of 8 mm. Load was applied vertically to the mid-shaft with a constant rate of
displacement of 0.03 mm/second until fracture. The biomechanical properties of
caudal vertebrae 6 and 7 (yield load, maximum load and stiffness) were derived
from compression testing using a 500-N load cell and two custom anvils. Vertebrae
were bonded in vertical alignment to a custom anvil support using cyanoacrylate
glue and load was applied vertically at a constant rate of displacement of 0.03 mm/s
and a sample rate of 20 Hz until approximately 1 mm of displacement had
occurred66.

Tissue expression screen. Expression in other non-skeletal organs tissues of
Auts2, Dact3, Ldlrad4 and Cttnbp2 and genes with established role in osteocyte
biology38 was analysed using data described in method section Comparison with
other organs and tissues. The mean expression in each tissue was first calculated
and then the percentage of this mean relative to maximum mean expression across
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all tissues used to construct heatmaps with the ggplot2 package. Bar plots of
normalised expression (FPKM) were constructed with ggplot2.

Association of osteocyte transcriptome signature genes with genetic skeletal
disorders. Osteocyte transcriptome signature gene orthologs known to cause rare
skeletal genetic disorders in humans were identified in the Nosology and Classi-
fication of Genetic Skeletal Disorders21. Significant over-representation was
examined under the hypergeometric distribution, using the parameters:

● Population - the number of mouse genes with human orthologs actively
expressed in any of the Bone comparison cohort, Skeletal maturation cohort
or Osteocyte enrichment cohorts or any of the 12 tissues described in the
Comparison with other organs and tissues section (15,368 genes)

● Successes in population - the number of genes known to cause genetic skeletal
disorders (either total or within each nosology-defined skeletal disease groups)
within the population (432 genes)

● Sample size - the number of osteocyte transcriptome signature genes within
the population(1043 genes)

● Successes in sample - the number of osteocyte transcriptome signature genes
known to cause genetic skeletal disorders(either total or within each individual
nosology-defined skeletal disease groups) within the population (90 genes)

Significant enrichment of osteocyte transcriptome signature gene orthologs among
all genes in the nosology, and within each of the nosology-defined skeletal disease
groups was calculated using the Graeber lab online hypergeometric calculator (https://
systems.crump.ucla.edu/hypergeometric/index.php). Donut plots, bubble plots and
bar charts were constructed using ggplot2. Genes known to cause osteogenesis
imperfecta (OI genes) were identified57 with the addition of SEC24D59 and
FAM46A58. OI-gene expression during osteocyte differentiation was assessed using an
independent, orthogonal dataset described in method section Orthogonal validation
of gene expression in osteocytes – Osteocytic cell-line. OI-gene expression in
osteocytes relative to other bone-cell types was assessed with an independent,
orthogonal dataset described in Methods section Orthogonal validation of gene
expression in osteocytes – Laser-capture micro-dissected osteocytes. Significant
differences in gene expression between cell types were calculated by two-way ANOVA
(adjusted for multiple-comparisons) and visualised using GraphPad Prism v7.
Expression in other non-skeletal organs tissues was analysed using data described in
method section Comparison with other organs and tissues. The mean expression in
each tissue was first calculated and then the percentage of this mean relative to
maximum mean expression across all tissues used to construct heatmaps with the
ggplot2 R-package. OI gene expression during skeletal maturation was analysed using
data described in section Defining changes in the osteocyte transcriptome with
skeletal maturation. The strength and significance of Pearson correlation between OI
gene expression and age were calculated for each sex using the cor,test function in the
stats R-package. Lineplots were produced in GraphPad Prism v7.

Enrichment of osteocyte transcriptome signature for orthologs associated
with osteoporosis and OA. Competitive gene-set analysis, LDSC-SEG, and ana-
lysis of genes nearest to significant loci, were used to investigate whether human
osteocyte transcriptome signature orthologs associated with: (i) quantitative
ultrasound-derived heel bone mineral density (eBMD), a predictor of osteoporosis
susceptibility, and (ii) self-reported, or hospital-diagnosed osteoarthritis.

Datasets used for analysis. Analyses of eBMD were performed on a sample of
362,924 unrelated white British subjects (54% female, GCTA pairwise relatedness <
0.10) from the UK Biobank Study (UKB)118 that had valid quantitative eBMD and
high-quality genome-wide HRC and 1000 G/UK10K imputed data from the Jan-
uary 2018 release [(i.e. 20,490,436 genetic variants with an information quality
score >0.3, minor allele frequency >0.05%, minor allele count >5, genotyping hard
call rate >0.95, and weak evidence of deviation from Hardy–Weinberg equilibrium
(P > 1 × 10−6)]. Analyses of individuals with OA were performed on precomputed
summary statistics from a recent UKBB and arcOGEN GWAS meta-analysis of
four predefined OA subcategories: Osteoarthritis at any site (ALLOA): 77,052 cases
and 378,169 controls, hip osteoarthritis (HIPOA): 15,704 cases and 378,169 con-
trols, knee osteoarthritis (KNEEOA): 24,955 cases and 378169 controls and hip
and/or knee (HIPKNEEOA): 39,427 cases and 378,169 controls. Details of how
eBMD and OA was defined and criteria for including individuals in each cohort are
detailed in the original publications25,64. No human research participants were
directly recruited for this work. Ethical approval for collection of data for the UK-
Biobank data was obtained from the Northwest Multi-Centre Research Ethics
Committee and informed consent was obtained from all participants prior to
participation. Project approval and access to the anonymised, deidentified UKBB
data was granted with accession ID: 53641. The arcOGEN study was ethically
approved by appropriate review committees, and the prospective collections were
approved by the National Research Ethics Service in the United Kingdom. All
subjects in arcOGEN provided written, informed consent.

Competitive gene set analysis. Overview: competitive gene set analysis involved a
three-stage process. In the first stage mouse–human orthologues were mapped and

the gene universe used for enrichment defined. In the second stage gene-based tests
of association were performed using genome-wide genetic data to estimate the
strength of association of each human protein-coding gene with eBMD or OA. In
the third stage, competitive gene set analysis was used to compare the mean
strength of association of human orthologues of osteocyte transcriptome signature
genes, to the mean strength of association of non-osteocyte transcriptome signature
genes. Evidence of enrichment was obtained through significance testing, in which
the null hypothesis of no difference in mean association between osteocyte, and
non-osteocyte signature gene sets was tested against a one-sided alternative that
stipulated that osteocyte transcriptome signature genes were on average more
strongly associated with eBMD or OA than non-osteocyte transcriptome
signature genes.

Stage 1- orthologue mapping and universe definition: mouse-to-human
orthologs were identified in the February 2014 Ensembl database archive, in line
with the GRCh37 genome used in the GWAS analysis, accessed through the
biomaRt R-package88. To ensure enrichment was calculated relative to genes that
had a fair chance of identification in the osteocyte transcriptome signature, and
avoid P-value inflation due to inclusion of genes not able to be assayed by RNA-
seq, the gene universe was limited to orthologs of genes actively expressed in any
sample type from either of the Bone comparison, Skeletal maturation or Osteocyte
enrichment cohorts, or any of the 12 non-skeletal tissues detailed in the
Comparison with other organs and tissues section. This encompassed 16,015
mouse–human orthologs, including 992 of the Osteocyte transcriptome signature
genes. All analyses were repeated relative to all human-mouse gene orthologs. In all
cases, the results from analyses relative to the gene universe were more conservative
than when all orthologs were used, and the more conservative results are
presented here.

Stage 2- Gene-based tests of association: Gene-based tests of association were
conducted in MAGMA (v1.06, https://ctg.cncr.nl/software/magma)62 using
imputed individual level genotype data for the analyses involving eBMD, and
GWAS meta-analysis summary results statistics for OA. Analyses involving eBMD
were further adjusted for age, sex, genotyping array, assessment centre and ancestry
informative principal components 1 – 20. Gene-based tests of association
encompassed a multi-model approach in which the association results from
different gene analysis models were combined to produce an aggregate p-value
corresponding to the strength of evidence of association between each gene (±20
kb) and eBMD or OA. The three association models included: a principal
components regression model, a SNP-wise mean χ2 model [i.e. test statistic derived
as the sum of −log(SNP P-value) for all SNPs that intersect the gene region of
interest], and SNP-wise top χ2 model [(test statistic derived as the sum of −log
(SNP P-value) for top SNP in the region of interest)]. The aggregate approach was
chosen as it yields a more even distribution of statistical power and sensitivity over
a wider range of different genetic architectures. Note: principal components
regression model could not be run for OA as the method requires individual level
genotyping data that was not available. The enrichment of genes with mutations
known to cause human genetic skeletal disorders21 was examined under the
hypergeometric distribution using the following parameters:

● Population: orthologs in the above defined gene universe (16,015 genes)
● Total number of successes in the population: genes in the population known to

cause skeletal disorders when mutated in humans (432)
● Sample: osteocyte transcriptome signature orthologs in the population with

significant gene-level associations with either eBMD or OA (eBMD= 259,
OA= 40)

● Number of sample successes: the number of Osteocyte transcriptome
signature orthologs in the population with significant gene-level association
with either eBMD or OA known to cause human skeletal disorders (eBMD=
36, OA= 8)

Significant enrichment was calculated using the Graeber lab online
hypergeometric calculator (https://systems.crump.ucla.edu/hypergeometric/index.
php).

Stage 3- Gene set analysis: competitive gene set analysis was used to determine
whether the set of 992 osteocyte transcriptome signature human gene orthologues
was on average more strongly associated with eBMD or OA than non-osteocyte
signature genes. The analysis accounted for several confounding factors including:
gene size, gene density (i.e. representing the relative level of LD between SNPs in
the gene) and the inverse of the mean minor allele count in the gene (i.e. to correct
for potential power loss in very low minor allele count SNPs), as well the log value
of these three factors.

Human genome coordinates (hg19) were mapped and Circos plots generated
for the osteocyte transcriptome signature orthologs with significant gene-level
associations with eBMD and OA using the ggbio R-package119. The top 100
genes associated with eBMD (ranked by P-value) were shown to avoid over-
plotting.

Stratified linkage disequilibrium score regression. LDSC-SEG60,61 was used in
conjunction with summary results statistics from recent GWAS of eBMD and
OA25,64 to investigate whether genomic regions surrounding osteocyte tran-
scriptome signature human gene orthologs contribute disproportionately to the
SNP heritability of eBMD and OA. Here, heritability was defined as the
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proportion of trait variation/disease liability explained by genome-wide imputed
genetic markers and is referred to as SNP heritability. Enrichment is expressed in
terms of per-SNP heritability, and estimated as the proportion of SNP herit-
ability explained by genomic regions intersecting the gene-set, divided by the
proportion of SNPs intersecting the corresponding gene set. Evidence of
enrichment is evaluated though significance testing, in which the null hypothesis
of no difference in per-SNP heritability, is tested against the one-sided alter-
native where the per-SNP attributable to the gene-set is greater than the per-SNP
heritability attributable to the rest of genes in the genome. Using a similar
approach to that described previously60,61, we constructed a genome-annotation
for autosomal gene regions ±20 kb of the osteocyte transcriptome signature
orthologs, a second encompassing all mappable mouse–human genes, and a
third annotation corresponding to the gene universe described above. We
applied LDSC-SEG60,61 to jointly model the osteocyte transcriptome signature
annotation, together with 52 functional genomic annotations that include genic
regions, enhancer regions and conserved regions (i.e. baseline model
v1.1 supplied with the LDSC-SEG software, https://github.com/bulik/ldsc). We
limited the analysis to high-quality imputed autosomal SNPs (INFO > 0.9),
excluded the HLA region from all analyses and used the 1000 Genomes LD
reference panel of unrelated European subjects as supplied with the software.
Enrichment was quantified by the LDSC-SEG regression coefficient, which
corresponds to the magnitude of enrichment in per-SNP eBMD heritability
attributable to the osteocyte transcriptome signature, conditional on the gene
universe and the 52 baseline annotations. Strength of evidence against the null
hypothesis of no enrichment attributable to the osteocyte transcriptome sig-
nature annotation, conditional on other annotations was determined by the
LDSC-SEG P-value. Sensitivity analysis was conducted by increasing the window
to ±100 kb of each gene and re-analysing.

Nearest-gene enrichment analysis. Lastly, we examined whether osteocyte tran-
scriptome signature orthologs were located nearest to genome wide significant
(GWS), conditionally independent GWAS loci associated with eBMD and OA
more often than would be expected by chance. This was examined under the
hypergeometric distribution using the following parameters:

● Population: orthologs in the above defined gene universe (16,015 genes)
● Total number of successes in the population: number of osteocyte

transcriptome signature orthologs in the population (992)
● Sample: genes in the population that are the nearest gene to a GWS loci

(eBMD= 638, OA= 52)
● Number of sample successes: number of osteocyte transcriptome signature

orthologs in the population that are the nearest gene to a GWS loci (eBMD=
110, OA= 13)

Significant enrichment was calculated using the Graeber lab online
hypergeometric calculator (https://systems.crump.ucla.edu/hypergeometric/index.
php). Only unique genes were used to calculate enrichment (genes located nearest
to multiple GWS loci were only counted once).

Quantification and statistical analysis. Statistical methodologies and software
used for performing these analyses are described in the appropriate sections.
Biological replicates were taken from distinct samples. Analyses using Trinity
(v2.0.6), Stringtie (v1.0.4), Cuffcompare (v2.2.1), Trimgalore (v0.3.3), STAR
(v2.4.1d) and RSEM (v1.2.21) were performed on a computing cluster running the
CentOS 6.8 (Rocks 6.2) Linux operating system. CTAn, NRecon and Drishti were
run using a Windows 7 OS. CPAT and ReViGo analyses were run using the web
interface. Hypergeometric enrichment was tested using the Graeber lab online
hypergeometric calculator (https://systems.crump.ucla.edu/hypergeometric/index.
php). Gene-based tests of association and competitive gene set analysis were
conducted with MAGMA (v1.06, https://ctg.cncr.nl/software/magma). LDSC-SEG
was conducted with LDSC-SEG software, https://github.com/bulik/ldsc (v1.1). All
other statistical analysis was performed in R ( > v3.4.0), with key packages cited in
the methods text. Error bars reflect mean and standard deviation unless stated
otherwise. Multiple hypothesis correction was used wherever significance was
evaluated across multiple statistical tests i.e. differential gene expression analysis
(Benjamini-Hochberg FDR), GO enrichment, KEGG enrichment, DO enrichment,
Nosology group enrichment (Bonferroni correction).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw RNA-sequencing data (fastq), read alignment files (BAM) and processed gene
expression data files for each cohort (FPKM and counts) are deposited at ArrayExpress
(https://www.ebi.ac.uk/arrayexpress) under the following accession numbers: bone
comparison cohort (E-MTAB-5532, https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-5532), skeletal maturation cohort (E-MTAB-7447, https://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-7447) and osteocyte enrichment cohort (E-MTAB-
5533, https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5533). There are no
restrictions on data availability. Various publicly available data resources were used in

this study: To compare the osteocyte transcriptome to that of other tissues, publicly
available sequencing read data was obtained (ArrayExpress accession E-GEOD-54652,
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-54652). To determine
whether the Magenta Cluster identified genes associated with perilacunar- remodelling,
their expression was examined during lactation using a publicly available microarray
dataset (ArrayExpress accession E-GEOD-23496, https://www.ebi.ac.uk/arrayexpress/
experiments/E-GEOD-23496). To compare expression of osteocyte transcriptome
signature genes in osteocyte with other bone-cell types we used a publicly available
microarray dataset which profiled gene expression in laser-capture micro-dissected
osteoblasts, bone-lining cells and osteocytes (GEO accession GSE71306, https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71306). To examine the expression of
osteocyte transcriptome signature genes during osteocyte differentiation, we analysed
publicly available transcriptome sequencing data from an in vitro model of osteoblast-
like cell to osteocyte differentiation (ArrayExpress accession E-GEOD-54783, https://
www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-54783). Human genotype and
phenotype data on which the results of this study were based were accessed from the UK
Biobank (http://www.ukbiobank.ac.uk/) with accession ID 53641.

Code availability
Custom code used to define gene activity, gene expression enrichment in osteocytes and
the osteocyte transcriptome signature are available in a public Github repository
accessible at https://github.com/scottyoulten/osteocyte_signature.
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