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Abstract
With age, the musculoskeletal system undergoes significant changes, leading to diseases such

as arthritis and osteoporosis. Due to the aging of the world population, the prevalence of such

diseases is therefore expected to starkly increase in the coming decades. While numerous

biological age predictors have been developed to assess musculoskeletal aging, it remains

unclear whether these different approaches and data capture a single aging process, or if the

diverse joints and bones in the body age at different rates. In the following, we leverage 42,000

full body, spine, hip and knee X-ray images and musculoskeletal biomarkers from the UK

Biobank and use artificial intelligence to build the most accurate musculoskeletal aging predictor

to date (RMSE=2.65±0.01 years; R-Squared=87.6±0.1%). Our predictor is composite and can

be used to assess spine age, hip age and knee age, in addition to general musculoskeletal

aging. We find that accelerated musculoskeletal aging is moderately correlated between these

different musculoskeletal dimensions (e.g hip vs. knee: Pearson correlation=.351±.004).

Musculoskeletal aging is heritable at more than 35%, and the genetic factors are partially

shared between joints (e.g hip vs. knee: genetic correlation=.52±.04). We identified single

nucleotide polymorphisms associated with accelerated musculoskeletal aging in approximately

ten genes for each musculoskeletal dimension. General musculoskeletal aging is for example

associated with a TBX15 variant linked to Cousin syndrome and acromegaloid facial

appearance syndrome. Finally, we identified biomarkers, clinical phenotypes, diseases,

environmental and socioeconomic variables associated with accelerated musculoskeletal aging

in each dimension. We conclude that, while the aging of the different components of the

musculoskeletal system is connected, each bone and joint can age at significantly different

rates.
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Background

With age, the musculoskeletal system undergoes important changes, putting individuals at risk

for diseases 1,2. Bone shape, density and cell composition are affected, leading to osteoporosis

and an increased risk of fracture 3–5. Aging affects the joints, increasing the risk for osteoarthritis

6 and degeneration of the intervertebral discs 7, as well as muscle mass and composition

(sarcopenia) 8. These changes lead to a greater vulnerability to falls, resulting in increased

mortality, morbidity and health care cost. 28.7% of US elderly fell in 2014 9.

Biological age predictors have been built to better understand the aging process of the

musculoskeletal system. In contrast to chronological age --a mere measure of the time that

passed since an individual’s birth-- biological age is a measure of the condition and damage

afflicting the body, and is the true underlying cause of age-related diseases. A forty year-old

patient suffering from early-onset osteoporosis and osteoarthritis could for example have a

biological musculoskeletal age of fifty years: we refer to such an individual as an accelerated

ager. Biological age predictors can be built by training machine learning algorithms to predict

chronological age from biomedical features, with the biological age of a participant being

defined as the prediction outputted by the model. Others have used full body 10, chest 11, hip

12–15, knee 16–22 or hand 23–30 X-ray images to predict age.

What remains elusive questions is whether the different bones, joints and muscle of a given

individual age at the same rate, whether accelerated musculoskeletal aging is heritable, and

what are the genetic factors associated with it. In the following, we leverage 42,000 UK Biobank
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31 full body, spine, hip and knee X-ray images, along with musculoskeletal biomarkers from

37-82 year-old participants,and use deep learning to build biological age predictors capturing

different facets of musculoskeletal aging. We perform genome wide association studies

[GWASs] and X-wide association studies [XWAS] to identify genetic and non-genetic factors

(e.g diseases, environmental and socioeconomic variables) associated with accelerated aging

in these different musculoskeletal dimensions.
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Results

We predicted chronological age within three years

We leveraged the UK Biobank, a dataset containing 42,000 full body, spine (sagittal and coronal

views), hip and knee X-ray images (Figure 1A, B and C), as well as more 500,000 than

anthropometry, impedance, heel bone densitometry and hand grip strengths measurements

(Figure 1A and B) from patients aged 37-82 years (Fig. S1). We predicted chronological age

from X-ray images using convolutional neural networks and from scalar biomarkers using elastic

nets, gradient boosted machines [GBMs] and shallow fully connected neural networks. We then

hierarchically ensembled these 31 models by musculoskeletal dimensions and subdimensions

(Figure 1A and D).
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Figure 1: Overview of the datasets and analytic pipeline. A - Musculoskeletal aging

dimensions and subdimensions. B - Body locations from where the datasets were

collected. C - X-ray samples. D - Analytic pipeline.
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We predicted chronological age with a testing root mean square error [RMSE] of 2.65±0.01

years and a R-Squared [R2] value of 87.6±0.1% (Figure 2). This prediction accuracy was largely

driven by the full body X-ray-based model (R2=85.7±0.1%). The spine X-ray-based model was

the second highest most accurate (R2=74.6±0.2%), with the sagittal view images providing more

information (R2=71.3±0.2%) than the coronal view images (R2=64.5±0.3%). Hip and knee

X-ray-based models performed the same (R2=69.0±0.3%), and the ensemble model built on

scalar datasets (anthropometry, impedance, heel bone densitometry and hand grip strength)

performed the worst (R2=25.9±0.1%), despite a 12 times larger sample size.

Figure 2: Chronological age prediction performance (R2 and RMSE)

* represent ensemble models
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Identification of features driving musculoskeletal age prediction

We used attention maps to identify the features driving the prediction of image-based models

(Figure 3).
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Figure 3: Attention map samples for X-ray-based models
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Warm colors highlight regions of high importance according to the Grad-RAM map. All images

were collected from 60-65 year-old females. For each triplet of images, the leftmost image is a

decelerated ager, the central image is a normal ager, and the rightmost image is an accelerated

ager.

Attention maps for full body X-ray images highlighted diverse body parts across participants.

Regions frequently highlighted included the neck, the upper torso, the hips and the knees

(Figure 4). Attention maps for sagittal view spine X-ray images most commonly highlighted the

lumbar region (Supplementary Figure 22), whereas the coronal view images highlighted diverse

vertebras across individuals (Supplementary Figure 23). Attention maps for hip X-rays

consistently highlighted the greater trochanter of the femur as well as the joint

(Supplementary Figure 24). Attention maps for knee X-rays highlighted diverse regions across

participants, such as the femur, the shin, the joint itself and occasionally the fibula

(Supplementary Figure 25).
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Figure 4: Attention maps for full body X-ray images

Warm colors highlight regions of high importance according to the Grad-RAM map.
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For scalar features, we best predicted accelerated musculoskeletal aging using a GBM or a

neural network; however, the R2 was moderate (25.2±0.4%). Impedance measures (five

features) and heel bone densitometry (six features) were poor predictors of chronological age,

with respective R2 values of 4.2±0.2% and 4.9±0.2%. Prediction accuracy was driven by

anthropometric measures (R2=15.1±0.3%; eight features) and hand grip strength

(R2=13.1±0.3%; two features). Specifically, the most important features were (1) White ethnicity,

(2) waist circumference, (3) weight, (4) impedance of whole body, (5) British ethnicity, (6) body

mass index [BMI], (7) left hand grip strength, (8) Sex, (9) right arm impedance and (10) Indian

ethnicity. The elastic net (R2=20.5±0.4%) assigned a positive regression coefficient to White

ethnicity, waist circumference, and British ethnicity and a negative regression coefficient to

weight, impedance of whole body, BMI, left hand grip strength and impedance of right arm.

Genetic factors and heritability of accelerated musculoskeletal

aging

We defined musculoskeletal age as the prediction outputted by the best performing model, after

correction for the analytical bias in the residuals (see Methods). For example, spine age is

defined as the prediction outputted by the ensemble model trained on both sagittal and

coronal-view spine X-ray images, and accelerated spine aging is defined as the difference

between spine age and chronological age.

We performed six genome wide association studies [GWASs] to estimate the GWAS-based

heritability of general (h_g2=34.9±1.8%), full body X-ray-based (h_g2=30.7±1.6%), spine
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X-ray-based (h_g2=32.9±1.7%), hip X-ray-based (h_g2=27.7±1.6%), knee X-ray-based

(h_g2=25.3±1.7%) and scalar biomarkers-based accelerated musculoskeletal aging

(h_g2=22.1±0.1%). We identified 8-20 single nucleotide polymorphisms [SNPs] in 6-13 genes

associated with accelerated aging for each X-ray-based aging dimension, and a larger number

associated with accelerated aging as defined by the scalar-based ensemble model, due to the

~10-times larger sample size. (Table 1)

Musculoskeletal
aging dimension

Sample
size

SNPs Genes Heritability (%)
R-Squared for

CA prediction (%)

General 35,277 11 9 34.9±1.8 87.6±0.1

Full body 38,820 8 8 30.7±1.6 85.7±0.1

Spine 37,826 22 13 32.9±1.7 74.6±0.2

Hip 38,806 20 7 27.7±1.6 69.0±0.3

Knee 36,727 12 6 25.3±1.7 69.0±0.3

Scalars-based 407,998 2631 954 22.1±0.2 25.9±0.1
Table 1: GWASs summary - Heritability, number of SNPs and genes associated with

accelerated aging in each musculoskeletal dimension

Approximately half (17/37) the peaks highlighted by the GWAS (e.g Figure 5) include a gene

whose function can be linked to musculoskeletal function. Specifically, for accelerated general

musculoskeletal aging, the GWAS highlighted TBX15 (linked to Cousin syndrome and

acromegaloid facial appearance syndrome) and CCDC91 (associated with ossification of the

posterior longitudinal ligament of the spine and diffuse idiopathic skeletal hyperostosis). For

accelerated full body musculoskeletal aging, the GWAS highlighted TBX15 (linked to Cousin

syndrome and acromegaloid facial appearance syndrome) and FGFR1 (linked to
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osteoglophonic dysplasia and Hartsfield syndrome). For accelerated spine aging, the GWAS

highlighted TNFSF11 (linked to osteopetrosis), SUPT3H (linked to dysostosis), SOX5 (involved

in cartilage formation and linked to Lamb-Shaffer syndrome) and ESR1 (linked to osteoporosis).

For accelerated hip aging, the GWAS highlighted SUPT3H (linked to dysostosis), CCDC91

(associated with ossification of the posterior longitudinal ligament of the spine and diffuse

idiopathic skeletal hyperostosis) and TNFSF11 (linked to osteopetrosis). For accelerated knee

aging, the GWAS highlighted CCDC91 (associated with ossification of the posterior longitudinal

ligament of the spine and diffuse idiopathic skeletal hyperostosis). For accelerated

musculoskeletal scalar features-based (anthropometry, impedance, heel bone densitometry and

hand grip strength) aging, the GWAS highlighted GDF5 (linked to osteoarthritis, acromesomelic

dysplasia, brachydactyly, proximal symphalangism, chondrodysplasia and multiple synostoses

syndrome), GPR126 (involved in body height and linked to distal arthrogryposis), PKDCC

(involved in development and linked to rhizomelic limb shortening with dysmorphic features),

POLD3 (linked to Ruijs-Aalfs syndrome) and ZBTB38 (involved in height).

We summarize our findings for each musculoskeletal dimension in the Supplementary.
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Figure 5: GWAS results - General musculoskeletal aging

-log10(p-value) vs. chromosomal position of locus. Dotted line denotes 5x10-8.

Biomarkers, clinical phenotypes, diseases, environmental and

socioeconomic variables associated with accelerated

musculoskeletal aging

We use “X” to refer to all nongenetic variables measured in the UK Biobank (biomarkers, clinical

phenotypes, diseases, family history, environmental and socioeconomic variables). We

performed an X-Wide Association Study [XWAS] to identify which of the 4,372 biomarkers

classified in 21 subcategories (Table S5), 187 clinical phenotypes classified in 11 subcategories

(Table S8), 2,073 diseases classified in 26 subcategories (Table S11), 92 family history variables

(Table S14), 265 environmental variables classified in nine categories (Table S17), and 91

socioeconomic variables classified in five categories (Table S20) are associated (p-value

threshold of 0.05 and Bonferroni correction) with accelerated musculoskeletal aging in the
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different dimensions. We summarize our findings for general accelerated musculoskeletal aging

below. Please refer to the supplementary tables (Table S6, Table S7, Table S9, Table S10,

Table S12, Table S13, Table S18, Table S19, Table S21, Table S22) for a summary of

non-genetic factors associated with general, full body, spine, hip, knee, and scalar

biomarkers-based accelerated musculoskeletal aging. The full results can be exhaustively

explored at https://www.multidimensionality-of-aging.net/xwas/univariate_associations.

Biomarkers associated with accelerated musculoskeletal aging

The three biomarker categories most associated with accelerated musculoskeletal aging are

body impedance, pulse wave measurements and brain MRI weighted means. Specifically,

100.0% of anthropometry biomarkers are associated with accelerated musculoskeletal aging,

with the three largest associations being with right arm impedance (correlation=.049), right leg

impedance (correlation=.044), and left arm impedance (correlation=.042). 53.3% of pulse wave

biomarkers are associated with accelerated musculoskeletal aging, with the three largest

associations being with heart rate (correlation=.041), central systolic blood pressure

(correlation=.040) and brachial blood pressure (correlation=.040). 39.5% of brain MRI weighted

means biomarkers are associated with accelerated musculoskeletal aging, with the three largest

associations being with measurements in the left and right tract anterior thalamic radiations

(correlations=.092-.089).

Conversely, the three biomarkers categories most associated with decelerated musculoskeletal

aging are hand grip strength, cognitive symbol digit substitution and heel bone densitometry.

Specifically, the two hand grip strength biomarkers are associated with decelerated

musculoskeletal aging (right and left hand grip correlations are respectively .123 and .115). The
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two symbol digits substitutions (a cognitive test) biomarkers are associated with decelerated

musculoskeletal aging (number of symbol digit matches made correctly: correlation=.058.

Number of symbol digit matches attempted: correlation=.058). 83.3% of heel bone densitometry

biomarkers are associated with decelerated musculoskeletal aging, with the three largest

correlations being with speed of sound through heel (correlation=.063), heel bone mineral

density (correlation=.062) and heel quantitative ultrasound index (correlation=.062).

Clinical phenotypes associated with accelerated musculoskeletal aging

The three clinical phenotype categories most associated with accelerated musculoskeletal aging

are breathing, claudication, and self-reported “general health”. Specifically, the two breathing

phenotypes are associated with accelerated musculoskeletal aging (shortness of breath walking

on level ground: correlation=.041, wheeze or whistling in the chest in the last year:

correlation=.027). 53.8% of the claudication phenotypes are associated with accelerated

musculoskeletal aging, with the three largest associations being leg pain on walking

(correlation=.066), leg pain when walking uphill or hurrying (correlation=.061), and leg pain on

walking: action taken (correlation=.057). 50.0% of general health phenotypes are associated

with accelerated musculoskeletal aging, with the three largest associations being with overall

health rating (correlation=.082), losing weight during the last year (correlation=.076), and

long-standing illness, disability or infirmity (correlation=.075).

Conversely, the three clinical phenotype categories most associated with decelerated

musculoskeletal aging are sexual factors (age first had sexual intercourse: correlation=.031),

cancer screening (most recent bowel cancer screening: correlation=.029) and mouth health (no

mouth/dental problem: correlation=.027).
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Diseases associated with accelerated musculoskeletal aging

The three disease categories most associated with accelerated musculoskeletal aging are

musculoskeletal diseases, cardiovascular diseases and general disease state. Specifically,

7.7% of musculoskeletal diseases are associated with accelerated musculoskeletal aging, with

the three largest associations being with knee arthrosis (correlation=.046), rheumatoid arthritis

(correlation=.042), and arthrosis (correlation=.038). 6.5% of cardiovascular diseases are

associated with accelerated musculoskeletal aging, with the three largest associations being

with hypertension (correlation=.059), chronic ischaemic heart disease (correlation=.033), and

angina pectoris (correlation=.031). 4.8% of general disease state variables are associated with

accelerated musculoskeletal aging, with the three largest associations being with personal

history of disease (correlation=.043), problems related to lifestyle (correlation=.038), and

personal history of medical treatment (correlation=.036).

Environmental variables associated with accelerated musculoskeletal aging

The three environmental variable categories most associated with accelerated musculoskeletal

aging are smoking, sun exposure, and electronic device usage. Specifically, 37.5% of smoking

variables are associated with accelerated musculoskeletal aging, with the three largest

associations being with pack years adult smoking as proportion of lifespan exposed to smoking

(correlation=.084), pack years of smoking (correlation=.080), and number of cigarettes currently

smoked daily (correlation=.072). 25.0% of sun exposure variables are associated with

accelerated musculoskeletal aging, with the three largest associations being with time spent

outdoors in summer (correlation=.072), time spent outdoors in winter (correlation=.060), and

facial aging: not knowing whether one looks younger or older than one’s chronological age
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(correlation=.052). One electronic devices variable is associated with accelerated

musculoskeletal aging (using mobile phone on the left side: correlation=.027).

Conversely, the three environmental variable categories most associated with decelerated

musculoskeletal aging are physical activity, smoking and medication. Specifically, 34.3% of

physical activity variables are associated with decelerated musculoskeletal aging, with the three

largest associations being with the frequency of strenuous sports in the last four weeks

(correlation=.070), duration of strenuous sports (correlation=.069), and the frequency of other

exercises in the last four weeks (correlation=.065). 25.0% of smoking variables are associated

with decelerated musculoskeletal aging, with the three largest associations being time from

waking to first cigarette (correlation=.073), age started smoking (correlation=.070), and smoking

status: never smoked (correlation=.068). 13.5% of medication variables are associated with

decelerated musculoskeletal aging, with the three largest associations being with not taking any

medication for cholesterol, blood pressure or diabetes (correlation=.074), not taking any

medication for pain relief, constipation or heartburn (correlation=.041), and not taking any

vitamins or supplements (correlation=.030).

Socioeconomic variables associated with accelerated musculoskeletal

aging

The three socioeconomic variable categories most associated with accelerated musculoskeletal

aging are socio-demographics (private healthcare: correlation=.034), education (no degree:

correlation=.032) and household (renting accommodation from local authority, local council or

housing association: correlation=.040).
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Conversely, the three socioeconomic variable categories most associated with decelerated

musculoskeletal aging are education, socio-demographics and employment. Specifically, 25.0%

of education variables are associated with decelerated musculoskeletal aging, with the two

associations being college or university degree (correlation=.054) and A/AS levels or equivalent

(correlation=.033). One sociodemographic variable is associated with decelerated

musculoskeletal aging: not receiving any attendance/disability/mobility allowance

(correlation=.052). 13.0% of employment variables are associated with decelerated

musculoskeletal aging, with the three largest associations being with the length of working week

for main job (correlation=.055), current employment status: in paid employment or

self-employed (correlation=.053), and frequency of travelling from home to job workplace

(correlation=.030).

Predicting accelerated aging from biomarkers, clinical

phenotypes, diseases, environmental variables and

socioeconomic variables

We predicted accelerated musculoskeletal aging using variables from the different X-datasets

categories (biomarkers, clinical phenotypes, diseases, environmental variables and

socioeconomic variables). Specifically we built a model using the variables from each of their

respective subcategories (e.g blood pressure biomarkers), and found that no dataset could

explain more than 5% of the variance in accelerated musculoskeletal aging.
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Phenotypic, genetic and environmental correlation between the

different musculoskeletal aging dimensions

Phenotypic correlation between aging dimensions

To determine whether the different components of the musculoskeletal systems of a given

individual age at the same rate, we computed the Pearson correlation between accelerated

aging (predicted age - chronological age) in each musculoskeletal aging dimension (Fig. S11

and Figure 6 - upper left matrix). We found an average correlation of .272±.130, based on the

ten pairwise correlations. The correlation increases as the aging dimensions become more

similar. Specifically, we found that the different X-ray-based dimensions are .351±.072

correlated on average (six pairwise correlations), and the scalar-based subdimensions

(anthropometry, impedance, heel bone densitometry and hand grip strength) are .345±.092

correlated on average (six pairwise correlations). Sagittal view-based and coronal view-based

accelerated spine aging are .487 correlated, “flesh view”-based and “figure view”-based

accelerated full body aging are .543 correlated, and “figure view”-based and “skeleton

view”-based accelerated full body aging are .714±.004 correlated.
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Figure 6: Phenotypic and genetic correlation between accelerated aging in the different

musculoskeletal aging dimensions

Upper left triangle: Pearson correlation between accelerated aging for each pair of

musculoskeletal dimensions. Lower right triangle: GWAS-based genetic correlation between

accelerated aging for each pair of musculoskeletal dimensions.
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Genetic correlation between aging dimensions

Images-based musculoskeletal aging dimensions (full body, spine, hip and knee) are genetically

.494±.064 correlated (based on six genetic correlations), whereas the scalar features-based

dimension (anthropometry, impedance, heel bone densitometry and hand grip strength) is only

.126±.098 correlated (based on four correlations) with the images-based musculoskeletal

dimensions. (Figure 6 - lower right matrix)

Correlation between musculoskeletal aging dimensions in terms of

associations with biomarkers, clinical phenotypes, diseases,

We compared associations with non-genetic variables across the different musculoskeletal

aging dimensions to understand if X-variables associated with accelerated aging in one

musculoskeletal dimension are also associated with accelerated aging in another

musculoskeletal dimension. For example, in terms of environmental variables, are the diets that

protect against spine aging the same as the diets that protect against knee aging?

We found that the average correlation between musculoskeletal aging dimensions is .461±.325

in terms of biomarkers, .784±.120 in terms of associated clinical phenotypes, .354±.278 in terms

of diseases, .850±.187 in terms of family history, .608±.190 in terms of environmental variables

and .608+-.190 in terms of socioeconomic variables (Fig. S12). To compare two specific

musculoskeletal dimensions, please refer to

https://www.multidimensionality-of-aging.net/correlation_between_aging_dimensions/xwas_univ

ariate - tab “Summary”, where they can be interactively explored. For the sake of the example,
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we provide the correlations between accelerated hip aging and accelerated knee aging in terms

of the different X-associations in Fig. S13.
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Discussion

We built the most accurate musculoskeletal age predictor to date

We built what is, to the best of our knowledge, the most accurate musculoskeletal system-based

chronological age predictor (RMSE=2.65±0.01 years; R-Squared=87.6±0.1%). Specifically, we

built the first spine X-ray-based chronological age predictor (R2=74.6±0.2%; RMSE=3.81±0.01

years) and we outperformed the best chronological age predictors in the literature for full body

X-rays (R2=85.7±0.1%; RMSE=2.85±0.01 years vs. R2=83%), hip X-rays (R2=69.0±0.3%;

RMSE=4.20±0.02 years) and adult knee X-rays, (R2=69.0±0.3%; RMSE=4.20±0.02 years). A

summary of the comparison between our models and the models reported in the literature can

be found in Table S1. We describe and discuss these comparisons more in detail in the

Supplementary.

Anatomical features driving age prediction

The attention maps of the models trained on knee X-ray images highlighted the joint, possibly

relying on osteoarthritis 32,33. Similarly, the attention maps of the models trained on hip X-ray

images highlighted both the joint and the proximal femur, which can possibly be explained by

osteoporosis 34,35 and changes in the shapes of the femoral neck 36 and medullary cavity 37 with

age. The attention maps of the models trained on spine X-ray images highlighted different

vertebrae, which can be explained by osteoporosis and degenerative changes 38. The lumbar

spine was particularly highlighted and is known to suffer from disc degeneration, among other

changes7. Finally, the attention maps of the models trained on full body X-ray images highlighted
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the neck, the upper torso, the hips and the knees. The highlighting of the neck can be possibly

explained by the fact that the neck tilt and the cervical angle tend to increase with age 39 and the

highlighting of the upper torso can be explained by increased osteoporosis and thoracic

kyphosis with age, as well as changes in the ribs shapes and angles 40,41.

With age, the body composition changes, as muscle mass decreases whereas fat mass

increases 42–44, which explains why the models trained on scalar datasets selected hand grip

strength, waist circumference, weight, whole-body impedance and body mass index as

important age predictors.

We identified genetic factors associated with accelerated

musculoskeletal aging

We found that accelerated musculoskeletal aging is 34.9±1.8% GWAS-heritable, with the

GWAS-heritability of its different dimensions ranging from 32.9±1.7% for spine aging to 22.1±0.1

for scalar biomarkers-based (anthropometry, impedance, heel bone densitometry, hand grip

strength) aging. We explain this difference in heritability, in part, by the difference in

chronological age prediction performances for the different dimensions (Figure 2). This suggests

that improving the chronological age predictors would lead to an increase in the estimated

GWAS-heritability of the associated accelerated musculoskeletal aging dimensions.

Among the GWAS peaks we identified and investigated, approximately half include a gene

whose function has a clear connection to musculoskeletal health (e.g CCDC91, associated with

ossification of the posterior longitudinal ligament of the spine and diffuse idiopathic skeletal
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hyperostosis), providing insights about the way genetics can influence the aging rates of the

different musculoskeletal dimensions. The GWAS highlighted other genes linked to the

cardiovascular health (e.g FGFR3P1, involved in vascular endothelial growth factor signaling),

cancer (e.g HTRA1, involved in cell growth regulation; FAM3C, linked to pancreatic cancer), skin

health (e.g AAGAB, linked to palmoplantar keratoderma), blood count (e.g SOCS2, involved in

cytokine signaling and linked to polycythemia) and kidney health (e.g PKD2L1, linked to

polycystic kidney disease). These findings suggest that accelerated musculoskeletal aging is

associated with poor health in other organ systems. In particular, we found that the most

significant SNP associated with accelerated knee aging lies in the WNT16 gene, which is

involved in signaling and is linked to aging in different organ systems 45–48, such as the brain 49,

the heart 50 and the intestines 51. We explore the hypothesis of multidimensional aging more in

detail in a different paper52. Genes associated with accelerated musculoskeletal aging represent

potentially promising target candidates for rejuvenating therapies.

We identified non-genetic factors associated with accelerated

musculoskeletal aging

Accelerated musculoskeletal aging is associated with musculoskeletal biomarkers such as

anthropometry, impedance and hand grip strength, as well as non musculoskeletal biomarkers

such as cardiovascular biomarkers (e.g blood pressure, arterial stiffness, ECG, heart function),

brain biomarkers (e.g cognitive function, MRI-features), blood biomarkers (e.g biochemistry,

blood count) and hearing biomarkers. We observed a similar pattern in terms of association with

clinical phenotypes and diseases.
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Accelerated musculoskeletal aging is associated not only with musculoskeletal phenotypes

(claudication, joint pain) and diseases (e.g knee arthrosis and rheumatoid arthritis), but also with

non-musculoskeletal phenotypes (e.g chest pain, mental health, mouth health) and diseases

(e.g cardiovascular, respiratory, mental, metabolic), suggesting that accelerated musculoskeletal

aging is correlated with accelerated aging in other organ systems. More generally,

musculoskeletal aging is associated with general health (e.g overall health rating, weight loss

during the last year, long-standing illness, disability or infirmity, general history of

disease/medical treatment, unhealthy lifestyle), and is observable to some degree, as it is

correlated with looking older than one’s age. These observations suggest that musculoskeletal

aging is affected by a general aging factor that similarly affects the aging of other organ

systems. However, again, while correlations were statistically significant, their association sizes

were modest to negligible. We further explore the connection between musculoskeletal aging

and aging in other organ systems in a different paper 52.

We found that height at age ten and accelerated musculoskeletal aging at adulthood are

positively correlated. A possible explanation is that taller individuals suffer from increased stress

on their joints, leading to premature musculoskeletal aging.

We identified lifestyle factors associated with accelerated musculoskeletal aging (e.g smoking)

and decelerated musculoskeletal aging (e.g physical activity), which is coherent with the

literature53,54 and credits the potential of lifestyle interventions to slow or reverse musculoskeletal

aging. UKB being an observational dataset, we however cannot claim to have proven a causal

link here.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.14.21258896doi: medRxiv preprint 

https://paperpile.com/c/XJuhCx/oB7GM
https://paperpile.com/c/XJuhCx/nERPO+BrAmA
https://doi.org/10.1101/2021.06.14.21258896
http://creativecommons.org/licenses/by-nc/4.0/


We found that accelerated musculoskeletal aging to be negatively correlated to socioeconomic

status (e.g income, education), reflecting the literature. In the US, the richest 1% males live on

average 14.6±0.2 years longer than the poorest 1% males, and the richest 1% females live on

average 10.1±0.2 years longer than the poorest 1% females 55. These differences are likely due

in part to better healthcare access and health literacy 56.

The different musculoskeletal components of a single individual

can age at different rates

We found that, on average (based on ten pairwise correlations), the different musculoskeletal

aging dimensions are phenotypically .272±.130 correlated and genetically .347±.208 correlated.

This correlation increases when the musculoskeletal dimensions considered are more similar,

for example when comparing X-ray-based musculoskeletal dimensions. While these correlations

might still seem low, one should keep in mind that the low values can be in part explained by the

variance of the age predictors and their imperfect predictions. For example, two convolutional

neural network architectures (InceptionV3 and InceptionResNetV2) trained on the exact same

dataset (full body “Figure” view X-ray images) yielded accelerated aging definitions that are only

.717±.003 correlated. Therefore, the perhaps surprisingly low phenotypic correlation between

hip aging and knee aging (.351±.004) can be reinterpreted as being approximately half the

correlation observed between two biologically identical datasets.

In contrast to the low phenotypic and genetic correlations between musculoskeletal dimensions,

we found that the different dimensions tend to be similarly associated with some of the

biomarkers, clinical phenotypes, diseases, environmental and socioeconomic variables
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categories. For example, smoking is associated with accelerated aging in all musculoskeletal

dimensions (average correlation between two musculoskeletal dimensions in terms of

association between accelerated aging and smoking variables = .825±.153). In other words,

exposures that lead to accelerated aging of a specific joint are likely to be associated with

accelerated aging of other joints, as well. While the association of these non-genetic variables

tend to be shared across musculoskeletal aging dimensions, it should be noted that each

non-genetic variable category explained less than 5% of the variance in accelerated

musculoskeletal aging.

Limitations

Some of our predictors predicted chronological age with high accuracy (e.g all encompassing

ensemble model: RMSE=2.65±0.04), and it has been suggested that, as chronological age

prediction accuracy increases, the associated biological age predictors lose their clinical

significance 57,58. A model that perfectly predicts chronological age only outputs chronological

age, not biological age.

In terms of associations between accelerated aging and non-genetic variables such as

environmental exposures, UKB is an observational study, which means that observing these

correlations does not allow us to infer causality. Each correlation could potentially be explained

by direct causality (e.g not exercising leads to accelerated musculoskeletal aging), reverse

causality (e.g poor musculoskeletal health limits physical activity) or confounding factors (e.g

exposure to a chemical could lead to both decreased musculoskeletal function and lung

function, the later leading to decreased physical activity).
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Utility of musculoskeletal age predictors

In conclusion, our predictors can be used to monitor the aging process of different

musculoskeletal components of a single individual and suggest potential lifestyle and

therapeutic interventions to slow musculoskeletal aging. Finally, we hypothesize that

musculoskeletal system-specific biological age predictors could be used in clinical trials to

assess the effect of rejuvenating therapies 59 for musculoskeletal aging. Because aging is

largely multidimensional 52,60, general biological age predictors, such as the DNA methylation

clock 61–63, might fail to measure the efficiency of rejuvenating drug candidates on this specific

facet of aging.
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Methods

Data and materials availability

We used the UK Biobank (project ID: 52887). The code can be found at

https://github.com/Deep-Learning-and-Aging. The results can be interactively and extensively

explored at https://www.multidimensionality-of-aging.net/. We will make the biological age

phenotypes available through UK Biobank upon publication. The GWAS results can be found at

https://www.dropbox.com/s/59e9ojl3wu8qie9/Multidimensionality_of_aging-GWAS_results.zip?d

l=0.

Software

Our code can be found at https://github.com/Deep-Learning-and-Aging. For the genetics

analysis, we used the BOLT-LMM 64,65 and BOLT-REML 66 softwares. We coded the parallel

submission of the jobs in Bash 67.

Cohort Dataset: Participants of the UK Biobank

We leveraged the UK Biobank31 cohort (project ID: 52887). The UKB cohort consists of data

originating from a large biobank collected from 502,211 de-identified participants in the United

Kingdom that were aged between 37 years and 74 years at enrollment (starting in 2006). Out of

these participants, 46,572 had X-ray images taken. The Harvard internal review board (IRB)

deemed the research as non-human subjects research (IRB: IRB16-2145).
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Data types and Preprocessing

The data preprocessing step is different for the different data modalities: demographic variables,

scalar predictors and images. We define scalar predictors as predictors whose information can

be encoded in a single number, such as height, as opposed to data with a higher number of

dimensions such as images (two dimensions, which are the height and the width of the image).

Demographic variables

First, we removed out the UKB samples for which age or sex was missing. For sex, we used the

genetic sex when available, and the self-reported sex when genetic sex was not available. We

computed age as the difference between the date when the patient attended the assessment

center and the year and month of birth of the patient to estimate the patient’s age with greater

precision. We one-hot encoded ethnicity.

Scalar biomarkers: anthropometry, impedance, heel bone densitometry and

hand grip strength

We define scalar data as a variable that is encoded as a single number, such as height or right

arm impedance, as opposed to data with a higher number of dimensions, such as images. The

complete list of scalar biomarkers can be found in Table S5 under “Musculoskeletal”. We did not

preprocess the scalar data, aside from the normalization that is described under cross-validation

further below.
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X-ray images

The UKB contains skeletal Dual-energy X-ray absorptiometry (DXA) images from the spine,

hips, knees and full body (field 20158, 42,287 images for 41,212 participants), saved as DICOM

files.

For the spine, images were collected for both the sagittal plane and the coronal plane. Not all

images had the same dimensions, so we resized all of them to the median size (1513*684

pixels for sagittal, 724*720 pixels for coronal) (Supplementary Figure 62).

For the hip and knee images, we took the left symmetry for the left side images. The images

had different dimensions between the participants, so we resized all the images to respectively

626*680 (hips) and 851*700 (knees). A sample for hip and knee images can respectively be

found in Supplementary Figure 63 and Supplementary Figure 64.

Two full body images are made available by UKB. One displays the skeleton of the participant,

surrounded by the shape of their body. We refer to this image as “Figure”. The other barely

displays the bone structure but makes the other tissues more visible. We refer to this image as

“Flesh”. From these two images, we generated two more images for each participant. (1) An

image for which we removed the shape of the body surrounding the skeleton, which we named

“Skeleton”. To isolate the skeleton from the rest of the image, we used the following algorithm.

For each pixel at the border of the image, we computed the position of the first bone pixel

encountered in every direction. All the pixels between the border pixel and the bone pixel were

set to black. We defined the bone pixels to be pixels with a value larger than or equal to 70

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.14.21258896doi: medRxiv preprint 

https://docs.google.com/document/d/1WHck9jjuzOgTMXcOaRIXMkz4XUhP4TNsZscbqF-JM-4/edit#sfi_spine_sample
https://docs.google.com/document/d/1WHck9jjuzOgTMXcOaRIXMkz4XUhP4TNsZscbqF-JM-4/edit#sfi_hip_sample
https://docs.google.com/document/d/1WHck9jjuzOgTMXcOaRIXMkz4XUhP4TNsZscbqF-JM-4/edit#sfi_knee_sample
https://doi.org/10.1101/2021.06.14.21258896
http://creativecommons.org/licenses/by-nc/4.0/


(white color) and smaller than 250 (to exclude non-bone bright artefact pixels). (2) An image for

which we superposed the three first images (Figure, Flesh and Skeleton) to generate a

three-layer RGB image that we named “Mixed”. We resized these four images to 811*272

pixels, the median image size, for all participants (Supplementary Figure 61).

We rescaled the values of the pixels to be between 0 and 1 instead of between 0 and 255 to

mitigate the explosion of gradients in the neural networks (see Methods-Algorithms). Starting

from grayscale images, we saved them as RGB by duplicating the values three times. As

explained in detail further below, we used transfer learning to analyze the images. In the context

of transfer learning, the size of the architecture of the model is affected by the dimension of the

input. Large images contain more information but require larger deep learning architectures that

take longer to train. To resolve prohibitory long training times, we resized the images so that the

total number of pixels for each channel would be below 100,000.

Data augmentation

To prevent overfitting and increase our sample size during the training we used data

augmentation68 on the images. Each image was randomly shifted vertically and horizontally, as

well as rotated and zoomed. We chose the hyperparameters for these transformations’

distributions to represent the variations we observed between the images in the initial dataset.

For example, for the hip and knee images, we observed similar variation between images in the

vertical and the horizontal direction, so both the random vertical and horizontal shifts were

sampled from the [-10%; +10%] uniform distribution. A summary of the hyperparameter values

for the transformations’ distributions can be found in Supplementary Table 37.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.14.21258896doi: medRxiv preprint 

https://docs.google.com/document/d/1WHck9jjuzOgTMXcOaRIXMkz4XUhP4TNsZscbqF-JM-4/edit#sfi_fullbody_sample
https://paperpile.com/c/XJuhCx/9jvhj
https://docs.google.com/document/d/1WHck9jjuzOgTMXcOaRIXMkz4XUhP4TNsZscbqF-JM-4/edit#sta_dataaugmentation_hyperparameters
https://doi.org/10.1101/2021.06.14.21258896
http://creativecommons.org/licenses/by-nc/4.0/


The data augmentation process is dynamically performed during the training. Augmented

images are not generated in advance. Instead, each image is randomly augmented before

being fed to the neural network for each epoch during the training.

Machine learning algorithms

For scalar datasets, we used elastic nets, gradient boosted machines [GBMs] and fully

connected neural networks. For images we used two-dimensional convolutional neural

networks.

Scalar data

We used three different algorithms to predict age from scalar data (non-dimensional variables,

such as laboratory values). Elastic Nets [EN] (a regularized linear regression that represents a

compromise between ridge regularization and LASSO regularization), Gradient Boosted

Machines [GBM] (LightGBM implementation 69), and Neural Networks [NN]. The choice of these

three algorithms represents a compromise between interpretability and performance. Linear

regressions and their regularized forms (LASSO 70, ridge 71, elastic net 72) are highly

interpretable using the regression coefficients but are poorly suited to leverage non-linear

relationships or interactions between the features and therefore tend to underperform compared

to the other algorithms. In contrast, neural networks 73,74 are complex models, which are

designed to capture non-linear relationships and interactions between the variables. However,

tools to interpret them are limited 75 so they are closer to a “black box”. Tree-based methods

such as random forests 76, gradient boosted machines 77 or XGBoost 78 represent a compromise

between linear regressions and neural networks in terms of interpretability. They tend to perform

similarly to neural networks when limited data is available, and the feature importances can still
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be used to identify which predictors played an important role in generating the predictions.

However, unlike linear regression, feature importances are always non-negative values, so one

cannot interpret whether a predictor is associated with older or younger age. We also performed

preliminary analyses with other tree-based algorithms, such as random forests 76, vanilla

gradient boosted machines 77 and XGBoost 78. We found that they performed similarly to

LightGBM, so we only used this last algorithm as a representative for tree-based algorithms in

our final calculations.

X-ray images

Convolutional Neural Networks Architectures

We used transfer learning 79–81 to leverage two different convolutional neural networks 82 [CNN]

architectures pre-trained on the ImageNet dataset 83–85 and made available through the python

Keras library 86: InceptionV3 87 and InceptionResNetV2 88. We considered other architectures

such as VGG16 89, VGG19 89 and EfficientNetB7 90, but found that they performed poorly and

inconsistently on our datasets during our preliminary analysis and we therefore did not train

them in the final pipeline. For each architecture, we removed the top layers initially used to

predict the 1,000 different ImageNet images categories. We refer to this truncated model as the

“base CNN architecture”.

We added to the base CNN architecture what we refer to as a “side neural network”. A side

neural network is a single fully connected layer of 16 nodes, taking the sex and the ethnicity

variables of the participant as input. The output of this small side neural network was

concatenated to the output of the base CNN architecture described above. This architecture

allowed the model to consider the features extracted by the base CNN architecture in the
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context of the sex and ethnicity variables. For example, the presence of the same anatomical

feature can be interpreted by the algorithm differently for a male and for a female. We added

several sequential fully connected dense layers after the concatenation of the outputs of the

CNN architecture and the side neural architecture. The number and size of these layers were

set as hyperparameters. We used ReLU 91 as the activation function for the dense layers we

added, and we regularized them with a combination of weight decay 92,93 and dropout 94, both of

which were also set as hyperparameters. Finally, we added a dense layer with a single node

and linear activation to predict age.

Compiler

The compiler uses gradient descent 95,96 to train the model. We treated the gradient descent

optimizer, the initial learning rate and the batch size as hyperparameters. We used mean

squared error [MSE] as the loss function, root mean squared error [RMSE] as the metric and we

clipped the norm of the gradient so that it could not be higher than 1.0 97.

We defined an epoch to be 32,768 images. If the training loss did not decrease for seven

consecutive epochs, the learning rate was divided by two. This is theoretically redundant with

the features of optimizers such as Adam, but we found that enforcing this manual decrease of

the learning rate was sometimes beneficial. During training, after each image has been seen

once by the model, the order of the images is shuffled. At the end of each epoch, if the

validation performance improved, the model’s weights were saved.

We defined convergence as the absence of improvement on the validation loss for 15

consecutive epochs. This strategy is called early stopping 98 and is a form of regularization. We
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requested the GPUs on the supercomputer for ten hours. If a model did not converge within this

time and improved its performance at least once during the ten hours period, another GPU was

later requested to reiterate the training, starting from the model’s last best weights.

Training, tuning and predictions

We split the entire dataset into ten data folds. We then tuned the models built on scalar data and

the models built on images using two different pipelines. For scalar data-based models, we

performed a nested-cross validation. For images-based models, we manually tuned some of the

hyperparameters before performing a simple cross-validation. We describe the splitting of the

data into different folds and the tuning procedures in greater detail in the Supplementary.

Interpretability of the machine learning predictions

To interpret the models, we used the regression coefficients for the elastic nets, the feature

importances for the GBMs, a permutation test for the fully connected neural networks, and

attention maps (saliency and Grad-RAM) for the convolutional neural networks (Supplementary

Methods).

Ensembling to improve prediction and define aging dimensions

We built a three-level hierarchy of ensemble models to improve prediction accuracies. At the

lowest level, we combined the predictions from different algorithms on the same aging

subdimension. For example, we combined the predictions generated by the elastic net, the

gradient boosted machine and the neural network from the anthropometric scalar biomarkers. At

the second level, we combined the predictions from different subdimensions of a unique
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musculoskeletal dimension. For example, we combined the scalar subdimensions

“Anthropometry”, “Impedance”, “Heel bone densitometry” and “Hand grip strength” into an

ensemble prediction. Finally, at the highest level, we combined the predictions from the five

musculoskeletal aging dimensions (full body, spine, hip, knee, scalar biomarkers) into a general

musculoskeletal age prediction. The ensemble models from the lower levels are hierarchically

used as components of the ensemble models of the higher models. For example, the ensemble

model built by combining the algorithms trained on anthropometric variables is leveraged when

building the general musculoskeletal aging ensemble model.

We built each ensemble model separately on each of the ten data folds. For example, to build

the ensemble model on the testing predictions of the data fold #1, we trained and tuned an

elastic net on the validation predictions from the data fold #0 using a 10-folds inner

cross-validation, as the validation predictions on fold #0 and the testing predictions on fold #1

are generated by the same model (see Methods - Training, tuning and predictions - Images -

Scalar data - Nested cross-validation; Methods - Training, tuning and predictions - Images -

Cross-validation). We used the same hyperparameters space and Bayesian hyperparameters

optimization method as we did for the inner cross-validation we performed during the tuning of

the non-ensemble models.

To summarize, the testing ensemble predictions are computed by concatenating the testing

predictions generated by ten different elastic nets, each of which was trained and tuned using a

10-folds inner cross-validation on one validation data fold (10% of the full dataset) and tested on

one testing fold. This is different from the inner-cross validation performed when training the
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non-ensemble models, which was performed on the “training+validation” data folds, so on 9

data folds (90% of the dataset).

Evaluating the performance of models

We evaluated the performance of the models using two different metrics: R-Squared [R2] and

root mean squared error [RMSE]. We computed a confidence interval on the performance

metrics in two different ways. First, we computed the standard deviation between the different

data folds. The test predictions on each of the ten data folds are generated by ten different

models, so this measure of standard deviation captures both model variability and the variability

in prediction accuracy between samples. Second, we computed the standard deviation by

bootstrapping the computation of the performance metrics 1,000 times. This second measure of

variation does not capture model variability but evaluates the variance in the prediction accuracy

between samples.

Musculoskeletal age definition

We defined the biological age of participants as the prediction generated by the model

corresponding to musculoskeletal dimension or subdimension, after correcting for the bias in the

residuals.

We indeed observed a bias in the residuals. For each model, participants on the older end of the

chronological age distribution tend to be predicted younger than they are. Symmetrically,

participants on the younger end of the chronological age distribution tend to be predicted older

than they are. This bias does not seem to be biologically driven. Rather it seems to be
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statistically driven, as the same 60-year-old individual will tend to be predicted younger in a

cohort with an age range of 60-80 years, and to be predicted older in a cohort with an age range

of 60-80. We ran a linear regression on the residuals as a function of age for each model and

used it to correct each prediction for this statistical bias.

After defining biological age as the corrected prediction, we defined accelerated aging as the

corrected residuals. For example, a 60-year-old whose spine X-ray data predicted an age of 70

years old after correction for the bias in the residuals is estimated to have a spine age of 70

years, and an accelerated spine aging of ten years.

It is important to understand that this step of correction of the predictions and the residuals

takes place after the evaluation of the performance of the models but precedes the analysis of

the musculoskeletal ages properties.

Genome-wide association of accelerated musculoskeletal aging

The UKB contains genome-wide genetic data for 488,251 of the 502,492 participants99 under

the hg19/GRCh37 build.

We used the average accelerated aging value over the different samples collected over time

(see Supplementary - Models ensembling - Generating average predictions for each

participant). Next, we performed genome wide association studies [GWASs] to identify

single-nucleotide polymorphisms [SNPs] associated with accelerated aging in each

musculoskeletal dimension using BOLT-LMM 64,65 and estimated the the SNP-based heritability

for each of our biological age phenotypes, and we computed the genetic pairwise correlations
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between dimensions using BOLT-REML 66. We used the v3 imputed genetic data to increase the

power of the GWAS, and we corrected all of them for the following covariates: age, sex,

ethnicity, the assessment center that the participant attended when their DNA was collected,

and the 20 genetic principal components precomputed by the UKB. We used the linkage

disequilibrium [LD] scores from the 1,000 Human Genomes Project 100. To avoid population

stratification, we performed our GWAS on individuals with White ethnicity.

Identification of SNPs associated with accelerated aging

We identified the SNPs associated with accelerated musculoskeletal aging dimensions and

subdimensions using the BOLT-LMM 64,65 software (p-value of 5e-8). The sample size for the

genotyping of the X chromosome is one thousand samples smaller than for the autosomal

chromosomes. We therefore performed two GWASs for each aging dimension. (1) excluding the

X chromosome, to leverage the full autosomal sample size when identifying the SNPs on the

autosome. (2) including the X chromosome, to identify the SNPs on this sex chromosome. We

then concatenated the results from the two GWASs to cover the entire genome, at the exception

of the Y chromosome.

We plotted the results using a Manhattan plot and a volcano plot. We used the bioinfokit 101

python package to generate the Manhattan plots. We generated quantile-quantile plots [Q-Q

plots] to estimate the p-value inflation as well.

Heritability and genetic correlation

We estimated the heritability of the accelerated aging dimensions using the BOLT-REML 66

software. We included the X chromosome in the analysis and corrected for the same covariates
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as we did for the GWAS. Using the same software and parameters, we computed the genetic

correlations between accelerated aging in the different musculoskeletal dimensions.

We annotated the significant SNPs with their matching genes using the following four steps

pipeline. (1) We annotated the SNPs based on the rs number using SNPnexus 102–106. When the

SNP was between two genes, we annotated it with the nearest gene. (2) We used SNPnexus to

annotate the SNPs that did not match during the first step, this time using their genomic

coordinates. After these two first steps, 30 out of the 9,697 significant SNPs did not find a

match. (3) We annotated these SNPs using LocusZoom 107. Unlike SNPnexus, LocusZoom does

not provide the gene types, so we filled this information with GeneCards 108. After this third step,

four genes were not matched. (4) We used RCSB Protein Data Bank 109 to annotate three of the

four missing genes.

Non-genetic correlates of accelerated aging

We identified non-genetically measured (i.e factors not measured on a GWAS array) correlates

of each aging dimension, which we classified in six categories: biomarkers, clinical phenotypes,

diseases, family history, environmental, and socioeconomic variables. We refer to the union of

these association analyses as an X-Wide Association Study [XWAS]. (1) We define as

biomarkers the scalar variables measured on the participant, which we initially leveraged to

predict age (e.g. blood pressure, Table S5). (2) We define clinical phenotypes as other biological

factors not directly measured on the participant, but instead collected by the questionnaire, and

which we did not use to predict chronological age. For example, one of the clinical phenotypes

categories is eyesight, which contains variables such as “wears glasses or contact lenses”,

which is different from the direct refractive error measurements performed on the patients, which
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are considered “biomarkers” (Table S8). (3) Diseases include the different medical diagnoses

categories listed by UKB (Table S11). (4) Family history variables include illnesses of family

members (Table S14). (5) Environmental variables include alcohol, diet, electronic devices,

medication, sun exposure, early life factors, medication, sun exposure, sleep, smoking, and

physical activity variables collected from the questionnaire (Table S17). (6) Socioeconomic

variables include education, employment, household, social support and other

sociodemographics (Table S20). We provide information about the preprocessing of the XWAS

in the Supplementary Methods.
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