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SUMMARY 

CRISPR/Cas9-based functional genomics have 
transformed our ability to elucidate mammalian cell 
biology. However, most previous CRISPR-based 
screens were conducted in cancer cell lines rather 
than healthy, differentiated cells. Here, we describe 
a CRISPR interference (CRISPRi)-based platform 
for genetic screens in human neurons derived from 
induced pluripotent stem cells (iPSCs). We demon-
strate robust and durable knockdown of endoge-
nous genes in such neurons and present results 
from three complementary genetic screens. First, 
a survival-based screen revealed neuron-specific 
essential genes and genes that improved neuronal 
survival upon knockdown. Second, a screen with a 
single-cell transcriptomic readout uncovered several 
examples of genes whose knockdown had strikingly 
cell-type-specific consequences. Third, a longitudi-
nal imaging screen detected distinct consequences 
of gene knockdown on neuronal morphology. Our re-
sults highlight the power of unbiased genetic screens 
in iPSC-derived differentiated cell types and provide 
a platform for systematic interrogation of normal and 
disease states of neurons. 

INTRODUCTION 

While DNA sequencing has provided us with an inventory of 
human genes, and RNA sequencing is revealing when and 
where these genes are expressed, the next challenge is to sys-
tematically understand the function of human genes in 
different cell types. A powerful approach to functionally anno-

tate the human genome is genetic screening in cultured cells. 
The robustness of such screens has improved substantially 
through the recent introduction of CRISPR/Cas9-based ap-
proaches. Cas9 nuclease can be targeted by single-guide 
RNAs (sgRNAs) to introduce DNA breaks in coding regions 
of genes, which are subsequently repaired by non-homolo-
gous end-joining pathways. This process frequently causes 
short deletions or insertions that disrupt gene function. This 
CRISPR nuclease (CRISPRn) strategy has enabled genetic 
screens through the use of pooled sgRNA libraries targeting 
large numbers of genes (Koike-Yusa et al., 2014; Shalem 
et al., 2014; Wang et al., 2014; Zhou et al., 2014). We previ-
ously developed an alternative platform for loss-of-function 
screens in mammalian cells based on CRISPR interference 
(CRISPRi) (Gilbert et al., 2014). In CRISPRi screens, sgRNAs 
target catalytically dead Cas9 (dCas9) fused to a KRAB tran-
scriptional repression domain to transcription start sites in 
the genome, thereby inhibiting gene transcription. CRISPRn 
and CRISPRi screening platforms each have their advantages 
for specific applications (Kampmann, 2018; Rosenbluh et al., 
2017) but generally yield similar results (Horlbeck et al., 
2016). Most previous CRISPR-based screens were imple-
mented in cancer cell lines or stem cells rather than healthy 
differentiated human cells, thereby limiting potential insights 
into cell-type-specific roles of human genes. 

Here, we present a CRISPRi-based platform for genetic 
screens in human induced pluripotent stem cell (iPSC)-derived 
neurons. To our knowledge, it is the first description of a large-
scale CRISPR-based screening platform in any differentiated, 
human iPSC-derived cell type. We focused on neurons as our 
first application, since functional genomic screens in human 
neurons have the potential to reveal mechanisms of selective 
vulnerability in neurodegenerative diseases (Kampmann, 2017) 
and convergent mechanisms of neuropsychiatric disorders (Will-
sey et al., 2018), thus addressing urgent public health issues. 
iPSC technology is particularly relevant to the study of human 
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neurons, since primary neurons are difficult to obtain from hu-
man donors and non-expandable due to their post-mitotic 
nature. 

We integrated CRISPRi technology with our previously 
described i3Neuron platform (Fernandopulle et al., 2018; 
Wang et al., 2017), which yields large quantities of highly homo-
geneous neurons, a prerequisite for robust population-based 
screens. We decided to use CRISPRi rather than CRISPRn, 
since CRISPRn-associated DNA damage is highly toxic to 
iPSCs and untransformed cells (Haapaniemi et al., 2018; lhry 
et al., 2018; Schiroli et al., 2019). Furthermore, CRISPRi 
perturbs gene function by partial knockdown, rather than 
knockout, thereby enabling the investigation of the biology of 
essential genes. While large-scale genetic screens in mouse 
primary neurons have previously been implemented using 
RNAi technology (Nieland et al., 2014; Sharma et al., 2013), 
CRISPRi represents an important advance over RNAi, since it 
lacks the pervasive off-target effects (Gilbert et al., 2014) 
inherent to RNAi-based screening approaches (Adamson 
et al., 2012; Jackson et al., 2003; Kaelin, 2012}. 

We demonstrate the versatility of our approach in three com-
plementary genetic screens, based on neuronal survival, single-
cell RNA sequencing (scRNA-seq), and neuronal morphology. 
These screens revealed striking examples of cell-type-specific 
gene functions and identified new genetic modifiers of neuronal 
biology. Our results provide a strategy for systematic dissection 
of normal and disease states of neurons and highlight the poten-
tial of interrogating human cell biology and gene function in 
iPSC-derived differentiated cell types. 

RESULTS 

Robust CRISPRi in Human iPSC-Derived Neurons 
As a first step toward a high-throughput screening platform in 
neurons, we developed a scalable CRISPRi-based strategy for 
robust knockdown of endogenous genes in homogeneous 
populations of human iPSC-derived neurons. We built on our 
previously described i3Neuron (i3N) platform, which enables 
large-scale production of iPSC-derived glutamatergic neurons. 
Central to this platform is an iPSC line with an inducible Neuro-
genin 2 (Ngn2) expression cassette (Zhang et al., 2013) in the 
AAVS1 safe-harbor locus (Fernandopulle et al., 2018; Wang 
et al., 2017). To enable stable CRISPRi in iPSC-derived neurons, 
we generated a plasmid (pC13N-dCas9-BFP-KRAB) to insert an 
expression cassette for CAG promoter-driven dCas9-BFP-
KRAB into the CL YBL safe harbor locus, which enables robust 
transgene expression throughout neuronal differentiation at 
higher levels than the AAVS1 locus (Cerbini et al., 2015) (Fig-
ure 1 A). We then integrated this cassette into our i3N iPSC line 
and called the resulting monoclonal line CRISPRi-i 3N iPSCs. A 
normal karyotype was confirmed for CRISPRi-i3N iPSCs 
(Figure S1A). 

To validate CRISPRi activity, we transduced these iPSCs with 
a lentiviral construct expressing an sgRNA targeting the trans-
ferrin receptor gene (TFRC). Knockdown of TFRC mRNA was 
robust in iPSCs and in i3Neurons for several weeks after differen-
tiation (Figures 1 B and 1 C). We also validated knockdown of 
three additional genes, UBQLN2 (Figures 1 D and 1 E), GRN (Fig-
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ures 1 F and 1 G), and CDH2 (Figure S1 B), by qRT-PCR, western 
blot, and/or immunofluorescence. Our platform thus enables 
potent CRISPRi knockdown of endogenous genes in iPSC-
derived neurons. 

Since CRISPRn-associated DNA damage has been found to 
be highly toxic to iPSCs (lhry et al., 2018), we evaluated whether 
the CRISPRi machinery caused DNA damage in iPSCs or other-
wise interfered with neuronal differentiation or activity. We found 
that expression of CRISPRi machinery and/or sgRNAs did not 
cause detectable DNA damage (Figures S1 C and S1 D), as ex-
pected based on the abrogation of nuclease activity in dCas9, 
and did not affect neuronal differentiation (Figure S1 E) or activity 
as evaluated by calcium imaging (Figure S1 F; Videos S1 and S2). 

We established the CRISPRi-i 3N system used throughout this 
study in the background of the well-characterized WTC11 iPSC 
line (Miyaoka et al., 2014). In addition, we also generated an 
equivalent line in the NCRM5 iPSC line (Luo et al., 2014) and vali-
dated its CRISPRi activity (Figure S1 G). 

A Pooled CRISPRi Screen Reveals Neuron-
Essential Genes 
We then used this platform to identify cell-type-specific genetic 
modifiers of survival in pooled genetic screen in iPSCs and iPSC-
derived neurons (Figure 2A). We first transduced CRISPRi-i3N 
iPSCs with our lentiviral sgRNA library H1 (Horlbeck et al., 
2016). The H1 library targets 2,325 genes encoding kinases 
and other proteins representing the "druggable genome" with 
at least five independent sgRNAs per gene, plus 500 non-target-
ing control sgRNAs, for a total of 13,025 sgRNAs. Transduced 
iPSCs were either passaged for 10 days or differentiated into 
neurons by doxycycline-induced Ngn2 expression. Neurons 
were collected 14, 21, and 28 days post-induction. Frequencies 
of cells expressing each sgRNA at each time point were deter-
mined by next-generation sequencing of the sgRNA-encoding 
locus. We observed highly correlated sgRNA frequencies be-
tween independently cultured experimental replicates (Fig-
ure S2A}, supporting the robustness of these measurements. 

To analyze the screen results, we developed a new bioinfor-
matics pipeline, MAGeCK-iNC (MAGeCK including Negative 
Controls, available at https://kampmannlab.ucsf.edu/mageck-
inc). This pipeline integrates a published method, MAGeCK (Li 
et al., 2014) with aspects of our previous bioinformatics pipeline 
(Kampmann et al., 2013, 2014) to take full advantage of the non-
targeting control sgRNAs in our library when computing p values 
(see STAR Methods for details}. Based on the depletion or 
enrichment of sgRNAs targeting specific genes at different 
time points compared to day 0, we identified hit genes for which 
knockdown was toxic or beneficial to either iPSCs or neurons at 
different time points (Figure 2B; Figure S2B). We then calculated 
a knockdown phenotype score and significance p value for each 
gene (Table S1). The large number of non-targeting sgRNAs in 
our library enabled us to generate "quasi-genes" from random 
groupings of non-targeting sgRNAs to empirically estimate a 
false discovery rate (FDR) for a given cutoff of hit strength 
[defined as the product of phenotype score and -log 10(p value)], 
see STAR Methods for details. We defined genes passing an 
FDR <0.05 as hit genes. For the majority of hit genes, two or three 
sgRNAs in the library resulted in strong phenotypes (Figures S2C 
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Figure 1. Durable Gene Knockdown by CRISPRi in Human iPSC-Derived Neurons 
(A) Construct pC13N-dCas9-BFP-KRAB for the expression of CRISPRi machinery from the CL YBL safe-harbor locus: catalytically dead Cas9 (dCas9) fused to 
blue fluorescent protein (BFP) and the KRAB domain, under the control of the constitutive CAG promoter. 
(B) Timeline for sgRNA transduction, selection and recovery, doxycycline-induced neuronal differentiation, and functional analysis of CRISPRi-i3N iPSCs. 
(C) Knockdown of the transferrin receptor (TFRC) in CRISPRi-i3N iPSCs and neurons. CRISPRi-i3N iPSCs were lentivirally infected with an sgRNA targeting TFRC 
or a non-targeting negative control sgRNA. Neuronal differentiation was induced by addition of doxycycline on day - 3  of the differentiation protocol and plating 
cells in neuronal medium on day 0. Cells were harvested at different days for qPCR. After normalizing by GAPDH mRNA levels, ratios of TFRC mRNA were 
calculated for cells expressing the TFRC-targeting sgRNA versus the non-targeting sgRNA; mean ± SD (two biological replicates). 
(D and E) Knockdown of ubiquilin 2 (UBQLN2) in CRISPRi-i3N neurons. CRISPRi-i3N neurons infected with UBQLN2 sgRNA or non-targeting control sgRNA were 
harvested on dy 11 for qPCR (D) or western blot (E) to quantify UBQLN2 knockdown at the mRNA level or protein level, respectively. (D) Relative UBQLN2 mRNA 
level was determined by normalizing UBQLN2 mRNA level by GAPDH. Relative UBQLN2 mRNA was calculated for cells expressing the UBQLN2-targeting 
sgRNA versus the non-targeting sgRNA; mean ± SD (three biological replicates). (E) Left, representative western blot (loading control 13-Actin). Right, quantifi-
cation of UBQLN2 protein levels normalized by 13-actin for cells with non-targeting sgRNAs or UBQLN2 sgRNA; mean ± SD (two independent western blots). 
(F and G) Knockdown of progranulin (GRN) in CRISPRi-i3N neurons. CRISPRi-i3N neurons infected with GRN sgRNA or non-targeting control sgRNA were 
harvested on day 11 for qPCR (F) or monitored by immunofluorescence (IF} microscopy on day 5. (G) Relative GRN mRNA level normalized by GAPDH mRNA. 
Ratio of relative GRN mRNA for cells expressing the GAN-targeting sgRNA versus the non-targeting sgRNA; mean± SD (three biological replicates). (G) Top row, 
non-targeting negative control sgRNA. Bottom row, sgRNA targeting progranulin. Progranulin signal (IF, green), neuronal marker Tuj1 (IF, red}, and nuclear 
counterstain DRAQ5 (blue) are shown. 
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and S20), justifying the use of five sgRNAs per gene in the pri-
mary screen library. 

Knockdown phenotypes of hit genes were strongly correlated 
between neurons at different time points but distinctly less corre-
lated between neurons and iPSCs (Figure 2C). Next, we 
compared genes that were essential in iPSCs and/or neurons 
in our screens with "gold-standard" essential genes that were 
previously identified through genetic screens in cancer cell lines 
(Hart et al., 2017). This analysis revealed a shared core set of 
essential genes, as expected, and additional iPSC-specific and 
neuron-specific essential genes (Figure 20). 

Using gene set enrichment analysis (GSEA) (Mootha et al., 
2003; Subramanian et al., 2005), we found enrichment of distinct 
groups of survival-related genes in neurons compared to iPSCs, 
such as genes associated with sterol metabolism (Figure S3A). 
We validated the strong neuronal dependence on the cholesterol 
biogenesis pathway pharmacologically using the HMG-CoA 
reductase inhibitor mevastatin (Figure 2E) and found that 
CRISPRi knockdown of HMG-CoA reductase (HMGCR) can be 
partially rescued by supplementing its product mevalonate 
(Figure 2F). 

We determined expression levels of genes at different time 
points during neuronal differentiation by Quant-seq (data 
deposited as GEO: GSE124703; the results can be visualized 
at https://kampmannlab.ucsf.edu/ineuron-rna-seq). As a group, 
neuron-essential genes were expressed at significantly higher 
levels than non-essential genes in iPSC-derived neurons (one-
sided Mann-Whitney U test, Figure S3B). The vast majority of 
neuron-essential genes were detectable at the transcript level, 
further supporting the specificity of our screen results. 

Intriguingly, we identified several genes that specifically 
enhanced neuronal survival when knocked down, including 
MAP3K12 (encoding dual leucine zipper kinase OLK), MAPKB 
(encoding Jun kinase JNK1), CDKN1C (encoding the cyclin-
dependent kinase inhibitor p57), and EIF2AK3 (encoding the 
eIF2a kinase PERK) (Table S1). A pathway involving OLK, JNK 
and PERK has previously been implicated in neuronal death 
(Ghosh et al., 2011; Huntwork-Rodriguez et al., 2013; Larham-
mar et al., 2017; Miller et al., 2009; Pozniak et al., 2013; Watkins 
et al., 2013; Welsbie et al., 2013), validating our approach. 

In summary, our large-scale CRISPRi screen in human iPSC-
derived neurons uncovered genes that control the survival of 
neurons, but not cancer cells or iPSCs, demonstrating the poten-
tial of our platform to characterize the biology of differentiated 
cell types. 

Pooled Validation of Hit Genes 
To validate and further characterize hit genes from the primary 
large-scale screen, we performed a series of secondary screens. 
For this purpose, we generated a new lentiviral sgRNA plasmid 
(pMK1334) that enables screens with single-cell RNA-seq read-
outs (based on the CROP-seq format [Oatlinger et al., 2017]) and 
high-content imaging readouts (expressing a bright, nuclear-tar-
geted BFP) (Figure 3A). We individually cloned 192 sgRNAs into 
this plasmid (184 sgRNAs targeting 92 different hit genes with 
two sgRNAs per gene and eight non-targeting control sgRNAs). 
Then, to confirm essential genes identified in our primary screen, 
we pooled these plasmids and conducted a survival-based vali-
dation screen (Figure 3A). Because the library size was small 
compared to the primary screen, we obtained a high representa-
tion of each sgRNA in the validation screen. As in the primary 
screen, CRISPRi-i 3N iPSCs transduced with the plasmid pool 
were either passaged as iPSCs or differentiated into glutamater-
gic neurons and then harvested at different time points for next-
generation sequencing and calculation of survival phenotypes 
for each sgRNA (Table S2). We observed a high correlation of 
raw sgRNA counts between two independently differentiated 
biological replicates (R2 > 0.9, Figure 3B), supporting the robust-
ness of phenotypes measured in the pooled validation screen. 
We then compared the results from the validation screen with 
those from the primary screen. In both iPSCs and neurons, all 
positive hits and most of the negative hits from the primary 
screen were confirmed in the validation screen (Figure 3C). 
These findings indicate that hits identified in the primary screen 
are highly reproducible. 

In the brain, many neuronal functions are supported by glial 
cells, particularly astrocytes. To rule out the possibility that hits 
from the primary screen were artifacts of an astrocyte-free cul-
ture environment, we included an additional condition in the vali-
dation screen, in which neurons were co-cultured with primary 
mouse astrocytes. Neuronal phenotypes in the presence or 
absence of astrocytes were highly correlated (Figures 30 and 
3E; Figure S4A), indicating that the vast majority of the neuron-
essential genes we identified are required even in the presence 
of astrocytes. However, we identified a small number of genes, 
including PPCOC, UROD, and MAT2A, for which knockdown 
was less toxic in the presence of astrocytes (Figure 3F). This sug-
gests that astrocytes may compensate for the loss offunction for 
these genes in neurons. We also identified a small number of 
other genes, including MMAB, UBA 1, and PPP2R2A, for which 
knockdown was more toxic in the presence of astrocytes 

Figure 2. Massively Parallel Screen for Essential Genes in iPSCs and iPSC-Derived Neurons 
(A) Strategy: CRISPRi-i3 N iPSCs were transduced with a lentiviral sgRNA library targeting 2,325 genes (kinase and the druggable genome) and passaged as 
iPSCs or differentiated into glutamatergic neurons. Samples of cell populations were taken at different time points, and frequencies of cells expressing a given 
sgRNA were determined by next-generation sequencing. 
(B) Volcano plots summarizing knockdown phenotypes and statistical significance (Mann-Whitney U test) for genes targeted in the pooled screen. Top, pro-
liferation or survival of iPSCs between day O and day 10. Bottom, survival of iPSC-derived neurons between day O and day 28. Dashed lines: cutoff for hit genes 
(FDR= 0.05, see STAR Methods). 
(C) Correlation of hit gene strength (the product of phenotype and -log 10(p value)) obtained for day 10 iPSCs and neurons harvested on days 14, 21, or 28 post-
induction. 
(D) Overlap between essential genes we identified here in iPSCs and neurons and gold-standard essential genes in cancer cell lines (Hart et al., 2017). 
(E) Survival of neurons without treatment (black) or with various concentrations of mevastatin (blue) quantified by microscopy; mean ± SD (six replicates). 
(F) Survival of neurons infected with non-targeting sgRNA (black) or HMGCR sgRNA (blue) or HMGCR sgRNA with various concentrations of mevalonate (pink to 
red} quantified by microscopy; mean ± SD (six replicates). 
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(B} Raw counts of sgRNAs from next-generation sequencing for biological replicates of day 10 iPSCs (left} and day 14 neurons (right} and coefficients of 
determination (R2

) , Each dot represents one sgRNA. 
(C) Knockdown phenotype scores from primary screens and validation screens for day 10 iPSCs (left} and day 14 neurons (right} and Pearson correlation co-
efficients (r}. Each dot represents one gene. 
(D) Hierarchical clustering of different cell populations from the pooled validation screens based on the pairwise correlations of the knockdown phenotype scores 
of all genes. 
(E) Heatmap showing knockdown phenotype scores of the genes targeted in the validation screen (columns) in different cell populations (rows). Both genes and 
cell populations were hierarchically clustered based on Pearson correlation. Red asterisks mark genes selected for secondary screens (CROP-seq and longi-
tudinal imaging). 
(F} Gene knockdown phenotype scores of day 14 neurons in monoculture (x axis} and co-culture with primary mouse astrocytes (y axis) and Pearson correlation 
coefficient (r). Each dot represents one gene. Outlier genes, (differences > ±2 SD from the mean differences} are labeled. 
(G} Strategy for degron-based inducible CRISPRi. Addition of trimethoprim (TMP} stabilizes the DHFR degron-tagged CRISPRi machinery. 

(legend continued on next page) 
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(Figure 3F). These genes may function in pathways affected by 
crosstalk between neurons and astrocytes. 

Inducible CRISPRi Distinguishes Neuronal 
Differentiation and Survival Phenotypes 
A caveat of our primary screen is that we introduced the sgRNA 
library into cells constitutively expressing CRISPRi machinery at 
the iPSC stage. Therefore, some hit genes detected in the pri-
mary screen may play a role in neuronal differentiation rather 
than neuronal survival. To explore this possibility, we developed 
a system to allow independent control of neuronal differentiation 
and CRISPRi activity. We generated inducible CRISPRi con-
structs by tagging the CRISPRi machinery (dCas9-BFP-KRAB) 
with dihydrofolate reductase (DHFR) degrons. In the absence 
of the small molecule trimethoprim (TMP), these DHFR degrons 
cause proteasomal degradation of fused proteins. Addition of 
TMP counteracts degradation (Iwamoto et al., 2010). Our initial 
construct contained a single N-terminal DHFR degron (Fig-
ure S4B), which was insufficient to fully suppress CRISPRi activ-
ity in the absence of TMP (Figure S4C). Therefore, we generated 
another plasmid (pRT029) with DHFR degrons on both the N and 
C termini of dCas9-BFP-KRAB (Figure 3G). This dual-degron 
CRISPRi construct was then integrated into the CL YBL locus 
of i3N-iPSCs. In the absence of TMP, the double-degron 
construct had no CRISPRi activity in iPSCs or neurons (Fig-
ure S4D). TMP addition starting at the iPSC stage resulted in 
robust CRISPRi activity in iPSCs and neurons (Figure S4D), 
and TMP addition starting at the neuronal stage resulted in mod-
erate CRISPRi activity (Figure S4E). While future optimization of 
the inducible CRISPRi construct will be necessary, these results 
indicate that temporal regulation of CRISPRi activity can be 
achieved in iPSCs and differentiated neurons. 

We used the inducible CRISPRi platform to determine whether 
hit genes from our primary screen were related to neuronal sur-
vival or differentiation. iPSCs expressing the dual-degron 
construct were transduced with the pooled validation sgRNA li-
brary. Cells were then cultured under three different conditions, 
including no TMP, TMP added starting at the iPSC stage, and 
TMP added at the neuronal stage (Figure 3H). In the population 
cultured without TMP, none of the sgRNAs showed strong phe-
notypes compared to cells to which TMP was added at the iPSC 
stage (Figure 31), confirming the tight control of the inducible sys-
tem. To determine whether any of the neuron-essential genes 
identified in our primary screen were in actuality required for dif-
ferentiation, we compared neurons in which knockdown was 
induced either at the iPSC stage or later at the neuronal stage 
of the protocol. Phenotypes observed in these two conditions 
were highly correlated (r = 0.98, Figure 3J), indicating that the 
vast majority of hits identified from the original screen are indeed 
essential for neuronal survival, rather than differentiation 
(Figure 3H). 

Interestingly, there was one exception: sgRNAs targeting 
PPP1R12C were strongly enriched when TMP was added at 
the iPSC stage, but this phenotype was substantially weaker 
when TMP was added at the neuron stage. Based on this finding, 
we hypothesized that these sgRNAs may interfere with neuronal 
differentiation. Indeed, we observed that two independent 
sgRNAs targeting PPP1R12C each caused continued prolifera-
tion instead of neuronal differentiation in a subset of iPSCs (Fig-
ures S4F and S4G), providing an explanation for the enrichment 
of cells expressing PPP1R12C-targeted sgRNAs in the primary 
screen. Thus, our inducible CRISPRi approach successfully un-
covered a false-positive hit from the primary screen, which 
affected differentiation as opposed to neuronal survival. Interest-
ingly, the AAVS1 locus, into which the inducible Ngn2 transgene 
was integrated, resides within the PPP1R12C gene. An open 
question remains as to whether PPP1R12C plays a role in 
neuronal differentiation or whether sgRNAs directed against 
PPP1R12C interfered with doxycycline-mediated induction of 
Ngn2. Taken together, these pooled validation screens 
confirmed that hits from the primary screen were highly repro-
ducible and that we were able to identify genes specifically 
essential for neuronal survival. 

CROP-Seq Generates Mechanistic Hypotheses for 
Genes Controlling Neuronal Survival 
Recently developed strategies to couple CRISPR screening to 
single-cell RNA sequencing readouts yield rich, high-dimen-
sional phenotypes from pooled screens (Adamson et al., 2016; 
Datlinger et al., 2017; Dixit et al., 2016). As a first step toward un-
derstanding the mechanisms by which hit genes affect the sur-
vival of iPSCs and neurons, we investigated how gene knock-
down altered transcriptomes of single cells (Figure 4A). We 
selected 27 genes that exemplified different categories of hits 
based on their pattern of survival phenotypes in iPSCs and neu-
rons (Figure 3E). A pool of 58 sgRNAs (two sgRNAs targeting 
each selected gene and four non-targeting control sgRNAs) in 
the secondary screening plasmid pMK1334 (Figure 3A) was 
transduced into CRISPRi-i3N iPSCs. We used the 1 Ox Genomics 
platform to perform single-cell RNA sequencing of ~20,000 
iPSCs and ~20,000 day 7 neurons. We chose to monitor tran-
scriptomic effects of hit gene knockdown at the early day 7 
time point to capture earlier, gene-specific effects of knock-
down, as opposed to later nonspecific effects reflecting toxicity. 
Transcripts containing sgRNA sequences were further amplified 
to facilitate sgRNA identity assignment, adapting a previously 
published strategy (Hill et al., 2018). Following sequencing, 
transcriptomes and sgRNA identities were mapped to individual 
cells (data deposited as GEO: GSE124703). High data quality 
was evident from the mean reads per cell (~84,000 for 
iPSCs, ~91,000 for neurons), the median number of genes de-
tected per cell (~5,000 for iPSCs, ~4,600 for neurons), and the 

(H) Strategy to test whether hit genes control neuronal survival or earlier processes. 
(I) Knockdown phenotype scores for day 14 neurons from screens in the inducible CRISPRi iPSCs, comparing populations with TMP added from the iPSC stage (x 
axis) to populations without TMP added (y axis). Each dot represents one gene. 
(J) Knockdown phenotype scores for day 14 neurons from screens in the inducible CRISPRi iPSCs, comparing populations with TMP added from the iPSC stage 
(x axis) to populations with TMP added from the neuronal stage (y axis) and Pearson correlation coefficient (r). Each dot represents one gene. The outlier gene, 
PPP1R12C, is labeled. 
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Figure 4. CROP-Seq Reveals Transcriptome Changes in iPSCs and iPSC-Derived Neurons Induced by Knockdown of Survival-Rele-
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(A) Strategy for CROP-seq experiments. 
(B) On-target knockdown efficiencies in the CROP-seq screen were quantified for iPSCs (left) and day 7 neurons (right). For each target gene, the 50% of cells with 
the strongest on-target knockdown were selected from all cells expressing sgRNAs targeting the gene; average expression of each target gene within these cells 
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number of cells to which a unique sgRNA could be assigned after 
quality control (~15,000 iPSCs, ~8,400 neurons). Based on the 
expression of canonical marker genes, we excluded the possibil-
ity that gene knockdown interfered with differentiation to gluta-
matergic neurons (Figure SSA). 

Next, we examined the transcriptomes of groups of cells ex-
pressing a given sgRNA (which we refer to as "sgRNA groups"). 
In both iPSCs and neurons, the two sgRNA groups expressing 
sgRNAs targeting the same gene tended to form clusters in 
t-distributed stochastic neighbor embedding (tSNE) plots (Fig-
ure S5B), confirming that independent sgRNAs targeting the
same gene had highly similar phenotypic consequences. The 
extent of gene knockdown varied across cells within an sgRNA 
group and between the two sgRNAs targeting the gene. Given 
that many genes selected for the CROP-seq screen are essen-
tial, it is likely that cells with lower levels of knockdown had a sur-
vival advantage and are enriched in the sequenced population.
To characterize phenotypes in cells with the most stringent
gene knockdown, we took advantage of the single-cell resolu-
tion of the CROP-seq data to select the top 50% of cells with
the best on-target knockdown for each gene for further analysis. 
We refer to this group of cells as the "gene knockdown group."
Compared to cells with non-targeting sgRNAs, the expression
levels of the targeted genes in a gene knockdown group were 
greatly repressed (Figure 4B). For most genes (24/27 in iPSCs, 
18/27 in neurons) knockdown levels of greater than 80% were 
achieved. Together, these findings further support the robust-
ness of CRISPRi knockdown and of the transcriptomic pheno-
types determined by our modified CROP-seq platform.

To characterize how gene knockdown altered transcriptomes 
of iPSCs and neurons, we performed differential expression 
analysis between gene knockdown groups and the negative 
control group (Table S3). While knockdown of some genes 
induced the expression of cell-death related genes (including 
PDCD2, AEN, GADD45A, and ATF3), no generic signature of 
dying cells dominated the differentially expressed genes. Rather, 
knockdown of different genes resulted in gene-specific tran-
scriptomic signatures (Figure 4C). By clustering gene knock-
down groups based on the signature of differential gene expres-
sion, we found transcriptomic signatures associated with 
knockdown of functionally related genes (Figure 4C). For some 
genes, knockdown resulted in upregulation of functionally 
related genes. For example, knockdown of genes involved in 
cholesterol and fatty acid biosynthesis, including HMGCS1, 
HMGCR, PMVK, MVK, MMAB, and HACD2, caused induction 
of other genes in the same pathway (Figure 4C; Table S3). 
Thus, pooled CROP-seq screens can identify and group func-
tionally related genes in human neurons. 

The CROP-seq screen also generated mechanistic hypothe-
ses. For example, knockdown of MAP3K12 specifically 
improved neuronal survival. Signaling by the MAP3K12-encoded 
kinase OLK was previously implicated in neuronal death and 
neurodegeneration (Ghosh et al., 2011; Huntwork-Rodriguez 
et al., 2013; Larhammar et al., 2017; Miller et al., 2009; Pozniak 
et al., 2013; Watkins et al., 2013; Welsbie et al., 2013). In our 
screen, knockdown of MAP3K12 resulted in coherent changes 
in neuronal gene expression (Figure 5A; Table S3). Ribosomal 
genes and the anti-apoptotic transcription factor Brn3a (en-

coded by POU4F1) were upregulated. Conversely, we observed 
downregulation of the pro-apoptotic BCL-2 protein Harakiri/OP5 
(encoded by HRK), the neurodegeneration-associated amyloid 
precursor protein (APP), and the pro-apoptotic transcription fac-
tor JUN, which is also a downstream signaling target of OLK 
(Welsbie et al., 2013). Furthermore, MAP3K12 knockdown 
caused downregulation of a vast array of proteins involved in 
cytoskeletal organization, and upregulation of specific synapto-
tagmins, which act as calcium sensors in synaptic vesicles. 
These changes in gene expression may relate to the function 
of OLK in synaptic terminals and its reported role as a neuronal 
sensor of cytoskeletal damage (Valakh et al., 2015). Last, 
MAP3K12 knockdown induced expression of neuritin (NRN1), 
a neurotrophic factor associated with synaptic plasticity and 
neuritogenesis (Cantallops et al., 2000; Javaherian and Cline, 
2005; Naeve et al., 1997; Yao et al., 2016). Intriguingly, neuritin 
levels are decreased in Alzheimer's disease patient brains, and 
overexpression of neuritin was found to be protective in a mouse 
model of Alzheimer's disease (Choi et al., 2014). Thus, CROP-
seq provides a wealth of testable hypotheses for neuroprotective 
mechanisms and specific effectors downstream of OLK/ 
MAP3K12 inhibition. 

CROP-Seq Reveals Neuron-Specific Transcriptomic 
Consequences of Gene Knockdown 
The results from our parallel CROP-seq screens in iPSCs and 
neurons enabled us to compare transcriptomic consequences 
of gene knockdown across both cell types (Figure S5C). Interest-
ingly, only a few genes, including SQLE, MMAB, MVK, UQCRQ, 
and ATPSB, showed high similarity (similarity score> 0.15) in the 
transcriptomic changes they induced in iPSCs versus neurons. 
Knockdown of most genes induced distinct transcriptomic re-
sponses in the two cell types. This suggests that either gene 
knockdown caused different stress states in the two cell types 
or that gene regulatory networks are wired differently in iPSCs 
and iPSC-derived neurons. 

To further dissect these cell-type-specific phenotypes, we 
ranked genes by the similarity of their knockdown phenotypes 
in iPSCs and neurons with respect to survival and transcrip-
tomic response (Figure S50). For some genes, both survival 
and transcriptomic phenotypes were similar in iPSCs and 
neurons. An example for this category of genes is UQCRQ, 
which encodes a component of the mitochondrial complex Ill 
in the electron transport chain. UQCRQ is essential in both 
cell types (Figure 5B), and knockdown of UQCRQ had similar 
transcriptomic consequences in both iPSCs and neurons-up-
regulation of mitochondrially encoded electron transport chain 
components and of ribosomal proteins (Figure 5C; Table S3). 
Similarly, knockdown of cholesterol and fatty acid biosynthesis 
genes induced expression of other cholesterol and fatty acid 
biosynthesis genes in both iPSCs and neurons (Figure 4C; 
Table S3). 

Interestingly, we also found examples of genes that were 
essential in both neurons and iPSCs yet caused substantially 
different transcriptomic phenotypes when knocked down (Fig-
ure S50). For example, knockdown of the essential E1 ubiquitin 
activating enzyme, UBA 1 (Figure 5B) caused neuron-specific in-
duction of a large number of genes (Figure 50; Table S3), 
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Figure 5. Cell-Type-Specific Responses to Gene Knockdown on the Transcriptomic Level 
(A) Changes in transcript levels caused by MAP3K12 knockdown in neurons from the CROP-seq screen. Differentially expressed genes (Padi < 0.05) in red 
(upregulation) or blue (downregulation) or other colors for genes discussed in the main text. 
(B) Knockdown phenotypes of UQCRQ (top) and UBA 1 (bottom) in iPSCs and iPSC-derived neurons from the primary and validation screens. Survival phe-
notypes of 2 sgRNAs targeting the same gene, mean± SD. 
(C and D) Transcriptomic changes caused by knockdown of UQCRQ (C) or UBA1 (D) in iPSCs and neurons. Differentially expressed genes (Padj < 0.05) in red 
(upregulation) or blue (downregulation) or other colors for genes discussed in the main text. 

including those encoding heat shock proteins (cytosolic chaper-
ones HSPAB and HSPB1 and endoplasmic reticulum chaper-
ones HSPA5 and HSP90B1). This suggests that compromised 
UBA 1 function triggered a broad proteotoxic stress response 
in neurons, but not iPSCs, consistent with the role of UBA 1 in 
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several neurodegenerative diseases (Groen and Gillingwater, 
2015). Thus, even ubiquitously expressed housekeeping genes 
can play distinct roles in different cell types. 

Last, we discovered that some genes differed with respect to 
both survival and transcriptomic phenotypes in neurons and 
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Figure 6. CROP-Seq Reveals Neuron-Specific Transcriptomic Consequences of MAT2A Knockdown 
(A) Methionine adenosyl transferase 2a (MAT2A) catalyzes the production of the methyl donor S-adenosylmethionine (SAM) from methionine and ATP. 
(B) MAT2A is essential in neurons, but not iPSCs. Knockdown phenotypes of MAT2A in iPSCs and neurons from the primary and validation screens. Survival 
phenotypes of 2 sgRNAs targeting MAT2A, mean± SD. 
(C and D) Changes in transcript levels caused by MA T2A knockdown in iPSCs (C) and neurons (D} from the CROP-seq screen. Differentially expressed genes 
(Pad; < 0.05) are in red (upregulation} or blue (downregulation}. 
(E} Gene set enrichment analysis (GSEA} results for differentially expressed genes in iPSC-derived neurons with MA T2A knockdown compared to negative control 
sgRNAs. Significantly enriched GO terms for biological process and cellular component are shown. 

iPSCs (Figure S5D). This was expected for genes predominantly 
expressed in neurons, such as MAP3K12 (Figure SA). However, 
we also found examples of genes in which knockdown had strik-
ingly different transcriptomic consequences in neurons and iPSCs 
despite high expression in both cell types. Such a gene is MAT2A, 
encoding methionine adenosyl transferase 2a, which catalyzes 
the production of the methyl donor S-adenosylmethionine (SAM) 
from methionine and ATP (Figure 6A). MAT2A is essential in neu-
rons, but not iPSCs (Figure 68). Knockdown of MAT2A in iPSCs 
did not substantially affect the expression of any gene other than 
MAT2A itself (Figure 6C). In neurons, however, knockdown of 
MAT2A caused differential expression of thousands of genes (Fig-
ure 6D; Table S3). Genes downregulated in neurons in response to 
MAT2A knockdown were enriched for neuron-specific functions 
(Figure 6E), providing a possible explanation for the neuron-selec-
tive toxicity of MAT2A knockdown. 

In summary, results from CROP-seq screens in iPSCs and 
iPSC-derived neurons further highlight differences in gene func-
tion across the two cell types, provide rich insights into conse-
quences of gene knockdown, and generate mechanistic hypoth-
eses. They further support the idea that it is critically important to 
study gene function in relevant cell types, even for widely ex-
pressed genes. 

An Arrayed CRISPRi Platform for Rich Phenotyping by 
Longitudinal Imaging 
While pooled genetic screens are extremely powerful due to their 
scalability, many cellular phenotypes cannot be evaluated using 
a pooled approach. Such phenotypes include morphology, tem-
poral dynamics, electrophysiological properties, and non-cell-
autonomous phenotypes. To expand the utility of our screening 
platform, we therefore optimized an arrayed CRISPRi platform 
for iPSC-derived neurons. 

As a proof-of-concept arrayed screen, we established a longi-
tudinal imaging platform to track the effect of knocking down 
selected hit genes from our primary screen on neuronal survival 
and morphology over time. First, we stably expressed cytosolic 
mScarlet (for neurite tracing) and nuclear-localized mNeon-
Green (for survival analysis) in CRISPRi-i 3N iPSCs. Then, we in-
fected these iPSCs in multi-well plates with lentiviral prepara-
tions encoding 48 individual sgRNAs (23 genes selected from 
the gene set from the CROP-seq screen targeted by two sgRNAs 
each, and two non-targeting sgRNAs), followed by puromycin 
selection and longitudinal imaging of iPSCs, or neuronal differen-
tiation. After 3 days, we re-plated pre-differentiated neurons on 
96-well plates alongside similarly prepared cells that did not ex-
press sgRNAs or the cytosolic mScarlet marker at a 1 :20 ratio to
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allow more accurate tracing of mScarlet-expressing neurons. 
These plates were then longitudinally imaged every few days us-
ing an automated microscope with a large area of each well 
imaged at each time point, allowing us to re-image the same 
populations of neurons over time (Figure 7 A; Videos S3 and S4). 

We developed an automated image analysis pipeline to 
segment neuronal cell bodies and neurites (Figure 78). By 
tracking cell numbers overtime, we could measure neuronal sur-
vival and iPSC proliferation (Figures 7C and 70). Quantification of 
survival based on longitudinal imaging was robust across inde-
pendent experiments (Figure S6A). Three individual sgRNAs 
were so toxic that they prevented longitudinal imaging and 
were removed from further analysis. As anticipated, the vast ma-
jority of sgRNAs that altered survival in pooled screens also 
altered survival in our arrayed longitudinal survival analysis (Fig-
ure 70). However, longitudinal imaging provided additional infor-
mation on the timeline of toxicity caused by knockdown of 
different genes and revealed gene-specific temporal patterns 
(Figures 70 and 7E). 

We then analyzed the effect of gene knockdown on neurite 
morphology. Our neurite segmentation algorithm extracted multi-
ple morphology metrics, including neurite length, number of 
neurite trunks, and neurite branching (Figures 78 and 7C). Our lon-
gitudinal imaging approach also enabled us to evaluate adverse 
effects of the expression of CRISPRi machinery and/or non-
targeting sgRNA using highly sensitive readouts. We found that 
neither CRISPRi machinery nor non-targeting sgRNAs affected 
neuronal survival (Figure S68) or neurite growth (Figure S6C). 

Surprisingly, knockdown of genes that we selected based on 
their impact on neuronal survival also had distinct effects on 
neuronal morphology (Figures 7C and 7F). Knockdown of the 
geranylgeranyltransferase PGGT1 B promoted both neurite 
growth and branching, consistent with previous findings that 
protein prenylation inhibits axon growth (Li et al., 2016). Neurite 
length and the number of neurite trunks were under independent 
genetic control (Figure 7G). Taken together, the profile of fea-
tures extracted from our imaging platform was so information-
rich and gene specific that hierarchical clustering of individual 
sgRNAs based on these features led to co-clustering of the 
two sgRNAs targeting a given gene for the majority of genes (Fig-

ure 7E). Conceptually, knockdown phenotypes of specific genes 
occupy distinct regions in a high-dimensional neuronal 
morphology space (Figures 7E and 7G). 

In combination with survival-based and CROP-seq screens, our 
arrayed high-content CRISPRi platform will enable the deep char-
acterization of gene function in a plethora of human cell types. 

DISCUSSION 

Here, we describe a platform for large-scale, multimodal 
CRISPRi-based genetic screens in human iPSC-derived neu-
rons. While CRISPR screens in cancer cells and stem cells 
have revealed numerous biological insights, we reasoned that 
screens in differentiated, non-cancerous cell types could eluci-
date novel, cell-type-specific gene functions. Indeed, our sur-
vival screens uncovered genes that were essential for neurons 
but not iPSCs or cancer cells. We also found that knockdown 
of some broadly expressed housekeeping genes, such as 
UBA 1, caused strikingly distinct transcriptomic phenotypes in 
neurons compared to iPSCs, consistent with the idea that 
gene functions can vary across distinct cell types. Last, our ar-
rayed screening platform uncovered gene-specific effects on 
longitudinal survival and neuronal morphology. These proof-of-
concept screens have generated a wealth of phenotypic data, 
which will provide a rich resource for further analysis and the 
generation of mechanistic hypotheses. 

The combination of CRISPRi functional genomics and iPSC-
derived neuron technology leverages the strengths of both ap-
proaches. Neurons are a highly specialized and disease-relevant 
cell type, and thus it is crucial to study certain human gene func-
tions in these cells. However, primary human neurons cannot 
readily be obtained in the quantities and homogeneity needed 
for large-scale screens. By contrast, human iPSCs have several 
fundamental qualities ideally suited for screens. They can be 
made from readily available cells, such as skin fibroblasts or pe-
ripheral mononuclear blood cells; they can be genetically engi-
neered and subsequently expanded to generate large numbers 
of isogenic cells; and they can then be differentiated into a variety 
of cell types, including specific neuronal subtypes. Differentia-
tion protocols based on induced expression of transcription 

Figure 7. Longitudinal Imaging to Track the Effect of Selected Hit Gene Knockdown on iPSC Growth, Neuronal Survival, and Neurite 
Morphology 
(A) Strategy for longitudinal imaging for neuronal survival and neurite morphology. 
(B) An example illustrating the image analysis pipeline. A raw image (left) containing sgRNA positive neurons expressing nuclear BFP (cyan) and cytosolic 
mScarlet (grayscale) were segmented and neurites were recognized (right). Different parameters, including neurite length, number of neurite trunks, and number 
of neurite branches were quantified for individual neurons. Total number of sgRNA positive neurons was quantified for each image to monitor neuronal survival. 
(C) Quantification of knockdown effects of PGGT1B and PPP2R1A on neuronal survival, neurite length, number of branches, and number of trunks. For each 
sgRNA, mean ± SD of replicate images is shown for each time point. '"Significant differences compared to non-targeting sgRNA (p < 0.001, Student's t test). 
(D) Examples of hit genes whose survival phenotypes in the pooled screens were validated by longitudinal imaging. Top, knockdown phenotypes of SOLE, 
HMGCR, MAT2A, and MAP3K12 in iPSCs and neurons from the validation screens. Average phenotypes of two sgRNAs targeting each gene; error bars represent 
SD. Growth curves of iPSCs (middle) and survival curves of neurons (bottom) with non-targeting sgRNAs and sgRNAs targeting SOLE, HMGCR, MAT2A, or 
MAP3K12. Fold change (for iPSCs, middle) or surviving fraction (for neurons, bottom) of number of sgRNA-positive cells relative to day 1 was calculated for each 
imaging well, mean ± SD for all replicate wells for one sgRNA are shown. 
(E) Changes of iPSC proliferation, neuronal survival and neurite morphology features relative to non-targeting sgRNAs at different time points (columns) induced 
by knockdown of different genes (rows). Rows were hierarchically clustered based on Pearson correlation. 
(F) Representative images of neurons withPGGT18 and PPP2R1A knockdown on days 1, 5, and 10. Nuclear BFP is shown in blue; cytosolic mScarlet is shown in 
red. Scale bar, 100 µm. 
(G) Effect of gene knockdown on neurite length (x axis) and number of neurite trunks (y axis). Each dot indicates the mean measurements of all neurons in one 
image. Different target genes are shown in different colors, and replicate images for one target gene are grouped by dashed lines in the same colors. 
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factors are particularly useful for screens, as they are rapid and 
yield large numbers of homogeneous neurons. In addition to 
the Ngn2-driven generation of glutamatergic neurons (Fernan-
dopulle et al., 2018; Wang et al., 2017; Zhang et al., 2013) 
used here, induced expression of different transcription factors 
yield other types of neurons, such as motor neurons (Hester 
et al., 2011; Shi et al., 2018) and inhibitory neurons (Yang et al., 
2017). Systematic screens are beginning to uncover additional 
combinations of transcription factors driving specific neuronal 
fates (Liu et al., 2018; Tsunemoto et al., 2018). Thus, iPSC tech-
nology could be used to generate different neuron types from an 
isogenic parental cell line, which would facilitate parallel CRISPR 
screens to dissect neuronal subtype-specific gene function. 
Such screens will address fundamental questions in neurosci-
ence, such as why specific neuronal subtypes are selectively 
vulnerable in neurodegenerative diseases (Kampmann, 2017). 
Furthermore, genetic modifier screens in neurons derived from 
patient iPSCs and isogenic controls have the potential to un-
cover new disease mechanisms. These discoveries may, in 
turn, yield new therapeutic strategies to correct cellular defects 
linked to disease genes. Despite their usefulness, iPSC-derived 
neurons have limitations-in particular, they do not fully recapit-
ulate all features of mature (or aging) neurons in the human brain. 
We anticipate that functional genomics approaches, such as 
ours, may hold the key to improving protocols that lead to ever 
more faithful models of mature human neurons. 

CRISPRi is particularly well suited as a method to study gene 
function in iPSC-derived neurons, for several reasons. First, it 
does not cause DNA damage (Figures S1C and S1D) and thus 
lacks the non-specific p53-mediated toxicity observed with 
CRISPRn approaches in iPSCs and untransformed cells (Haapa-
niemi et al., 2018; lhry et al., 2018). Second, it is inducible and 
reversible (Gilbert et al., 2014), enabling the time-resolved 
dissection of human gene function. Third, it perturbs gene func-
tion via partial knockdown, as opposed to knockout, thereby 
enabling functional characterization of essential genes, as 
demonstrated in this study. 

There are several areas for further development of our plat-
form. Further optimization of inducible CRISPRi will result in 
more potent gene repression in mature neurons, leading to 
increased sensitivity. The standard use of inducible CRISPRi 
would be preferable in order to initiate gene perturbation in the 
differentiated cell state, thereby avoiding false-positive pheno-
types due to interference with the differentiation process. Also, 
establishment of our CRISPR activation (CRISPRa) approach in 
iPSC-derived neurons will enable gain-of-function genetic 
screens, which yield complementary insights to CRISPRi loss-
of-function screens (Gilbert et al., 2014). Finally, using synthetic 
sgRNAs instead of lentivirus in arrayed CRISPRi screens would 
substantially increase scalability. 

We anticipate that the technology described here can be 
broadly applied to include additional neuron-relevant readouts, 
such as multi-electrode arrays (to measure electrophysiological 
properties) and brain organoids (to assay interactions of neurons 
with other cell types). However, our technology is not limited to 
neurons and should provide a paradigm for investigating the 
specific biology of numerous other types of differentiated cells. 
Parallel genetic screens across the full gamut of human cell 
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types cells may systematically uncover context-specific roles 
of human genes, leading to a deeper mechanistic understanding 
of how they control human biology and disease. 
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Continued 

REAGENT or RESOURCE 
Plasmid:pMTL5 
Plasmid:pMK1334 

Software and Algorithms 
NIS Elements AR 5.02.01 64-bit 

Fiji - 2.0.0-rc-69/1.52n 
CellProfiler- 3.1.5 
BlueBee Genomics Platform 
Bow1ie-1.2.1.1 
MAGeCK- 0.5.7 
MAGeCK-iNC 
Cell Ranger- 2.2.0 

R- 3.5.1 

seater- 1.8.4 

fgsea -1.7.1 

WebGestalt 
Cluster- 3.0 

Java TreeView- 1.1.6r4 

SOURCE 
This paper 
This paper 

Nikon Instruments Inc. 

Schindelin et al., 2012 
Carpenter et al., 2006 
BlueBee 
Langmead et al., 2009 
Li et al., 2014 
This paper 
1 OX Genomics 

The R project 
McCarthy et al., 2017 

Sergushichev, 2016 

Zhang et al., 2005 
Eisen et al., 1998 

Saldanha, 2004 

LEAD CONTACT AND MATERIALS AVAILABILITY 

IDENTIFIER 
Addgene Plasmid#127967 
Addgene Plasmid#127965 

https://www.microscope.healthcare.nikon.com/ 
products/software/nis-elements 
https://imagej.net/Fiji 
https://cellprofiler.org/ 
https://www.bluebee.com/quantseq 
http://bow1ie-bio.sourceforge.net/index.shtml 
https://sourceforge.net/p/mageck/wiki/Home/ 
https://kampmannlab.ucsf.edu/mageck-inc 
https://support.1 0xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/what-is-cell-
ranger 
https://www.r-project.org/ 
https:/ /bioconductor .org/packages/release/bioc/ 
html/seater.html 
https:/ /bioconductor .org/packages/release/bioc/ 
html/fgsea.html 
http://www.webgestalt.org/# 
http://bonsai.hgc.jp/~mdehoon/software/cluster/ 
software.htm#ctv 
http:/ /jtreeview .sourceforge. net/ 

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martin 
Kampmann (martin.kampmann@ucsf.edu). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Human iPSCs 
Human iPSCs (male WTC11 background (Miyaoka et al., 2014) unless otherwise noted; male NCRM5 (Luo et al., 2014) background in 
Figure S1 G) were cultured in Essential 8 Medium (GIBCO/Thermo Fisher Scientific; Cat. No. A 1517001) on Bio l i te  Cell Culture 
Treated Dishes (Thermo Fisher Scientific; assorted Cat. No.) coated with Growth Factor Reduced, Phenol Red-Free, LDEV-Free Ma-
trigel Basement Membrane Matrix (Corning; Cat. No. 356231) diluted 1 :100 in Knockout DMEM (GIBCO/Thermo Fisher Scientific; 
Cat. No. 10829-018). Briefly, Essential 8 Medium was replaced every other day or every day once 50% confluent. When 
80%-90% confluent, cells were passaged, which entailed the following: aspirating media, washing with DPBS, incubating with 
Stem Pro Accutase Cell Dissociation Reagent (GIBCO/Thermo Fisher Scientific; Cat. No. A 11105-01) at 37° C for 7 min, diluting Ac-
cutase 1 :5 in DPBS, collecting in conicals, centrifuging at 200 g for 5 min, aspirating supernatant, resuspending in Essential 8 Medium 
supplemented with 10nM Y-27632 dihydrochloride ROCK inhibitor (Tocris; Cat. No. 125410). counting, and plating onto Matrigel-
coated plates at desired number. Studies with human iPSCs at UCSF were approved by the The Human Gamete, Embryo and 
Stem Cell Research (GESCR) Committee, and studies at NIH adhered to NIH Intramural Research Program policies regarding the 
registration and use of NHSR iPSC lines. Informed consent was obtained from the human subjects when the WTC11 (Miyaoka 
et al., 2014) and NCRM5 (Luo et al., 2014) lines were originally derived. 

Human iPSC-derived neurons 
Human iPSCs engineered to express mNGN2 under a doxycycline-inducible system in the AAVS1 safe harbor locus were used for the 
differentiation protocol below. iPSCs were released and centrifuged as above, and pelleted cells were resuspended in N2 Pre-Dif-
ferentiation Medium containing the following: Knockout DMEM/F12 (GIBCO/Thermo Fisher Scientific; Cat. No. 12660-012) as the 
base, 1X MEM Non-Essential Amino Acids (GIBCO/Thermo Fisher Scientific; Cat. No. 11140-050), 1X N2 Supplement (GIBCO/ 
Thermo Fisher Scientific; Cat. No. 17502-048), 10ng/mL NT-3 (PeproTech; Cat. No. 450-03), 10ng/mL BDNF (PeproTech; Cat. 
No. 450-02), 1 µg/mL Mouse Laminin (Thermo Fisher Scientific; Cat. No. 23017-015), 1 0nM ROCK inhibitor, and 2 µg/mL doxycycline 
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hydrochloride (Sigma-Aldrich; Cat. No. D3447-500MG) to induce expression of mNGN2. iPSCs were counted and plated at 7 x 105 

cells per Matrigel-coated well of a 6-well plate in 2 m l  of N2 Pre-Differentiation Medium, or at 4 x 106 cells per Matrigel-coated 10-cm 
dish in 12ml of medium, for three days. After three days, hereafter Day 0, pre-differentiated cells were released and centrifuged as 
above, and pelleted cells were resuspended in Classic Neuronal Medium containing the following: half DMEM/F12 (GIBCO/Thermo 
Fisher Scientific; Cat. No. 11320-033) and half Neurobasal-A (GIBCO/Thermo Fisher Scientific; Cat. No. 10888-022) as the 
base, 1X MEM Non-Essential Amino Acids, 0.5X GlutaMAX Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 35050-061), 
0.5X N2 Supplment, 0.5X 827 Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 17504-044), 10ng/ml NT-3, 1 Ong/ml 
BDNF, 1 µg/ml Mouse Laminin, and 2 µg/ml doxycycline hydrochloride. Pre-differentiated cells were subsequently counted and 
plated plated at 2 x 105 cells per well of a BioCoat Poly-O-Lysine 12-well plate (Corning; Cat. No. 356470) in 1 m l  of Classic Neuronal 
Medium, or at 7.5 x 106 cells per BioCoat Poly-O-Lysine 10-cm dish (Corning; Cat. No. 356469) in 10ml medium. On Day 7, half of 
the medium was removed and an equal volume of fresh Classic Neuronal Medium without doxycycline was added. On Day 14, half of 
the medium was removed and twice that volume of fresh medium without doxycycline was added. On Day 21, one-third of the me-
dium was removed and twice that volume of fresh medium without doxycycline was added. On Day 28 and each week after, one-third 
of the medium was removed and an equal volume of fresh medium without doxycycline was added. 

For the longitudinal imaging screens, updated media formulations were used for neuronal differentiation and culture. During the 
three days of pre-differentiation, we used Induction Medium containing the following: Knockout DMEM/F12 (GIBCO/Thermo Fisher 
Scientific; Cat. No. 12660-012) as the base, 1X GlutaMAX Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 35050-061), 
1 X MEM Non-Essential Amino Acids (GIBCO/Thermo Fisher Scientific; Cat. No. 11140-050), 1 X N2 Supplement (GIBCO/Thermo 
Fisher Scientific; Cat. No. 17502-048), 10nM ROCK inhibitor, and 2ug/ml doxycycline (Sigma #09891). Differentiated neurons 
were cultured in Cortical Neuron Culture Medium containing the following: BrainPhys Neuronal Medium (STEMCELL Technologies 
#05790) or BrainPhys without Phenol Red (STEMCELL Technologies #05791) as the base, 1X 827 Supplement (GIBCO/Thermo 
Fisher Scientific; Cat. No. 17504-044), 10ng/ml NT-3 (PeproTech; Cat. No. 450-03), 10ng/ml BDNF (PeproTech; Cat. No. 
450-02), 1 ug/ml Mouse Lam in in (R&D Systems #3446-005-01 ), and optionally 2  Lg/ml doxycycline. 

Primary mouse astrocytes 
Primary mouse astrocytes were isolated from two P1 mouse pups and cultured in T75 in DMEM + 10% FBS. One day after plating 
neurons, astrocytes were dissociated by trypsin, washed by PBS to remove any remaining FBS and centrifuged at 200 g for 5 min. 
The pelleted astrocytes were resuspended in the Classic Neuronal Medium and plated onto the neuronal culture at a 1 :5 astrocytes to 
neurons ratio. Media changes were performed as indicated above for neuronal culture. Once astrocytes were confluent, 2 µM final 
concentration of AraC was added to the culture. Mouse experiments were approved by the UCSF Institutional Animal Care and Use 
Committee (IACUC), and all experiments conformed to relevant regulatory standards. 

METHOD DETAILS 

Molecular Cloning 
The CL YBL-targeting constitutive CRISPRi vector pC13N-dCas9-BFP-KRAB was obtained by sub-cloning dCas9-BFP-KRAB from 
plasmid pHR-SFFV-dCas9-BFP-KRAB downstream of a CAG promoter in the CL YBL-targeting pC13N-iCAG.copGFP vector via 
BsrGI and Agel digestion, thus replacing copGFP and generating the plasmid. pHR-SFFV-dCas9-BFP-KRAB was a gift from Stanley 
Qi & Jonathan Weissman, Addgene plasmid # 46911; http://addgene.org/46911; RRID: Addgene_ 46911 (Gilbert et al., 2013) and 
pC13N-iCAG.copGFP was a gift from Jizhong Zou (Addgene plasmid# 66578; http://addgene.org/66578; RRID: Addgene_66578 
[Cerbini et al., 20151). 

The AAVS1-targeting constitutive CRISPRi vector pMTL3 was obtained by inserting a gene block (gBlock, IDT Technologies) en-
coding BFP-KRAB into pAAVS1-NC-CRISPRi to create a C-terminal fusion with dCas9, and replacing the neomycin resistance 
marker with a puromycin resistance marker. pAAVS1-NC-CRISPRi (Gen3) was a gift from Bruce Conklin (Addgene plasmid # 
73499; http://addgene.org/73499; RRID: Addgene_73499 [Mandegar et al., 20161). The degron controlled version was generated 
by inserting a gene-block encoding E. coli dihydrofolate reductase (ecDHFR)--derived degrons with the R12Y, G67S, and Y1001 mu-
tations (Iwamoto et al., 2010) to generate an N-terminal fusion with the CRISPRi machinery. 

The CL YBL-targeted inducible CRISPRi construct pRT029 was generated by sub-cloning gene blocks encoding E. coli dihydro-
folate reductase (ecDHFR)-derived degrons with the R12Y, G67S, and Y100I mutations in thefirstdegron and R12H, N18Tand A19V 
in the second degron (Iwamoto et al., 2010) to generate both an N-terminal and a C-terminal in-frame fusion with dCas9-BFP-KRAB in 
pC13N-dCas9-BFP-KRAB. 

The secondary screening vector pMK1334 was generated as follows: The PpuMI - SnaBI fragment of CROPseq-Guide-Puro 
was replaced with a gene block encoding the mU6-BstXI-Blpl-optimized sgRNA backbone fragment from our sgRNA vector 
pCRISPRia-v2 (Addgene plasmid # 84832; http://addgene.org/84832; RRID: Addgene_84832 [Horlbeck et al., 20161) to obtain 
pMK1332. CROPseq-Guide-Puro was a gift from Christoph Bock (Addgene plasmid# 86708; http://addgene.org/86708; RRID: 
Addgene_86708 [Datlinger et al., 2017]). Next, the Rsrll + PflMI fragment from pMK1332 was replaced by the Rsrll + PflMI fragment 
from pCRISPRia-v2 to introduce tagBFP, creating pMK1333. Last, tagBFP was replaced by a gene block encoding 2xmycNLS-
tagBFP2 to obtain pMK1334. 
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The mNeon-Green-NLS vector (H53) was generated by sub-cloning an EF1 a. promoter and mNeon-Green with two SV40-NLS into 
the pMK1333 vector via Xhol and EcoRI digestion, thus replacing the mU6 promoter, the original EF1a. promoter, and the original 
fluorophore. The mScarlet vector (12) was generated by sub-cloning mScarlet downstream of an EF1 a. promoter in the H53 vector 
via Bmtl and EcoRI digestion, thus replacing mNeon-Green-NLS. 

The GCaMP6m vector (11) was generated by sub-cloning GCaMP6m downstream of an EF1 a. promoter in the H53 vector via Bmtl 
and EcoRI digestion, thus replacing mNeon-Green-NLS. 

Vector maps are available at https://kampmannlab.ucsf.edu/resources, and plasmids will be shared on Addgene. 

CRISPRi iPS cell line generation 
WTC11 iPSCs harboring a single-copy of doxycycline-inducible mouse NGN2 at the AAVS1 locus (Wang et al., 2017; Fernandopulle 
et al., 2018) were used as the parental iPSC line for further genetic engineering. iPSCs were transfected with pC13N-dCas9-BFP-
KRAB and TALENS targeting the human CLYBL intragenic safe harbor locus (between exons 2 and 3) (pZT-C13-R1 and pZT-
C13-L1, Addgene #62196, #62197) using DNA In-Stem (VitaScientific). After 14 days, BFP-positive iPSCs were isolated via FAGS 
sorting, and individualized cells were plated in a serial dilution series to enable isolation of individual clones under direct visualization 
with an inverted microscope (EtaLuma LS 620) in a tissue culture hood via manual scraping. Clones with heterozygous integration of 
dCas9-BFP-KRAB (determined using PCR genotyping) were used for further testing. Karyotype testing (Cell Line Genetics) was 
normal for the clonal line used for further experiments in this study, which we termed CRISPRi-i3N iPSCs. Similarly, we generated 
the inducible CRISPRi iPSC line by using pRT029 as a donor plasmid, instead of pC13N-dCas9-BFP-KRAB. 

NCRM5 iPSCs (Luo et al., 2014) were used as a second parental iPSC line for genetic engineering. iPSCs were transfected using 
Lipofectamine Stem (ThermoFisher #STEM00003) 

with Alt-R S.p. HiFi Cas9 Nuclease V3 (Integrated DNA Technologies #1081060), a custom sgRNA targeting the human CL YBL 
intragenic safe harbor locus (between exons 2 and 3) from Synthego (sequence ATGTTGGAAGGATGAGGAAA), and the following 
plasmids: pC13N-dCas9-BFP-KRAB, CLYBL-TO-hNGN2-BSD-mApple (Addgene #124229) and pCE-mp53DD (Okita et al., 2013) 
(Addgene #41856). The following day, iPSCs were individualized and plated in a serial dilution series to enable isolation of individual 
clones under direct visualization with an inverted microscope (EtaLuma LS 620) in a tissue culture hood via manual scraping. While 
iPSCs were plated in the serial dilution series, 20 µM blasticidin (Gemini Bio-Products #400-165P) was added to the culture medium 
for 1-4 days to select for clones with successful integration of TO-hNGN2-BSD-mApple. Clones with heterozygous integration of 
dCas9-BFP-KRAB and TO-hNGN2-BSD-mApple (determined using PCR genotyping) were used for further testing, including func-
tional CRISPRi activity (verified by GRN immunocytochemistry) and neuronal differentiation (verified visually and with TUJ1 
immunocytochemistry). 

Dissociation of neurons 
Papain (Worthington; Code: PAP2; Cat. No.LK003178) was resuspended in 1 X Hanks' Balanced Salt Solution (Corning; Cat. No. 21-
022-CV) to 20U/mL and warmed at 37° C for 10 min. Magnesium chloride was added at 5mM and DNase (Worthington; Code: DPRF; 
Cat. No. LS006333) was added at 5ug/mL immediately before use. Culture medium was aspirated and human iPSC-derived neurons
were washed with DPBS. The papain, magnesium chloride, and DNase solution was added at 250 µL per well of a 12-well plate or at
2mL per 10-cm dish and incubated at 37° C for 10 min. This dissociation solution was quenched in 5 volumes of DMEM (GIBCO/
Thermo Fisher Scientific; Cat. No. 10313-039) supplemented with 10% fetal bovine serum for each volume of dissociation solution,
and the resulting solution was used to detach and transfer the sheet of cells to the appropriate collection tube format. For DNA, RNA, 
or protein extraction, the neuron sheet was centrifuged at 200 g for 3 min, the supernatant was carefully removed with a P1000
pipette, and the pellet was snap frozen in liquid nitrogen. For flow cytometry analysis, the neuron sheet was triturated 10-15 times
and centrifuged at 200 g for 10 min, the supernatant was carefully removed with a P1000 pipette, and the pellet was resuspended
in staining solution.

Quantification of knockdown by qPCR 
To quantify TFRC or CDH2 knockdown, human iPSCs or neuron cell pellets were thawed on ice, and total RNA was extracted using 
the Quick-RNA Miniprep Kit (Zymo; Cat. No. R1054). An input of 1 00ng RNA was used to synthesize cDNA with the SuperScript Ill 
First-Strand Synthesis System (lnvitrogen; Cat. No. 18080-051 ). Samples were prepared for qPCR in technical duplicates in 15 µL 
reaction volumes using SensiFAST SYBR Lo-ROX 2X master mix (Bioline; Cat. No. 810-94005), custom qPCR primers from Inte-
grated DNA Technologies used at a final concentration of 0.4uM, and cDNA (prepared above) diluted at 1 :2 or 1:100 for the target 
or housekeeping gene, respectively. Quantitative real-time PCR was performed on an Agilent Mx3005P QPCR System with the 
following Fast 2-Step protocol: 1) 95° C for 2 min; 2) 95° C for 5 s (denaturation); 3) 60° C for 15 s (annealing/extension); 4) repeat steps 
2 and 3 for a total of 40 cycles; 5) ramp from 55° C to 95° C to establish melting curve. Expression fold changes were calculated using 
the   Ct method. 

To quantify UBQLN2 or GRN knockdown, total RNA was extracted from Day 11 CRISPRi-i3N neurons on 12-well plates using the 
Direct-zol 96 RNA Kit (Zymo #R2055). Samples were prepared for RT-qPCR in technical and biological triplicates in 10 µL reaction 
volumes using the iTaq Universal Probes One-Step Kit (Bio-Rad #172-5141). The following PrimePCR Probe Assays from Bio-Rad 
were diluted 1 :20: GAP DH (Unique Assay ID qHsaCEP0041396), UBQLN2 (qHsaCEP0055207), and GRN (qHsaCEP0057821 ). 
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Quantitative real-time PCR was performed on a QuantStudio 6 Flex Real-time PCR System (ThermoFisher #4485691). Expression 
fold changes were calculated using the ��Ct method. 

Quantification of knockdown by Western Blot 
To quantify protein level knockdown of UBQLN2 by UBQLN2 sgRNA in CRISPRi-i3N neurons, neurons with 2 different non-targeting 
sgRNAs or UBQLN2 sgRNA were lysed and 20ug of total protein from each lysate was loaded into a Nu PAGE 4%-12% Bis-Tris Gel 
(lnvitrogen, Cat# NP0336BOX). Subsequently, the gel was transferred onto a nitrocellulose membrane, which was then blocked by 
Odyssey® Blocking Buffer (PBS) (LI-COR, Cat#927-50000), followed by overnight incubation with primary antibodies at 4 degree. 
The primary antibodies used were Mouse monoclonal anti-13-Actin (8H10D10) (Cell Signaling Technology, Cat#3700) and Rabbit 
monoclonal anti-UBQLN2 (D7R2Z) (Cell Signaling Technology, Cat#85509). After incubation, the membrane was washed three times 
with TBST and then incubated with secondary antibodies (LI-COR Cat# 926-32211 and 926-68070) at room temperature for 1 hr. The 
membrane was then washed 3 times with TBST and once with TBS and imaged on the Odyssey Fe Imaging system (LI-COR Cat# 
2800). Digital images were processed and analyzed using lmageJ. 

lmmunocytochemistry 
To evaluate N-cadherin (CDH2) knockdown, pre-differentiated neurons were plated in Classic Neuronal Medium with doxycycline on 
day Oat 4 x 104 cells per well on sterilized, Matrigel-coated 12mm diameter round glass coverslips (Ted Pella Inc; Cat. No. 26023) 
placed in 24-well plates. One day later, primary rat cortical astrocytes (gift from Li Gan) were plated in Classic Neuronal Medium with 
doxycycline on the same coverslips (co-culture) at 8 x 103 cells per well. On days 7 and 14, half of the medium was removed and an 
equal volume of fresh Classic Neuronal Medium without doxycycline was added. On day 18, culture medium was aspirated from each 
well and cells were subsequently washed with DPBS. Cells were then fixed with 4% paraformaldehyde, which was prepared by 
diluting 16% paraformaldehyde (Electron Microscopy Sciences; Cat. No. 15710) 1 :4 in DPBS, at room temperature for 15 min. Para-
formaldehyde was removed with a P1000 pipette and collected for proper disposal, and coverslips were washed three times with 
DPBSfor 5 min each. Cells were blocked with 2.5ug/ml Mouse BO Fe Block (BO Biosciences; Cat. No. 553141) at room temperature 
for 15 min and subsequently incubated with 1 u l  mouse lgG1 k anti-human CD325 antibody conjugated to APC (Biolegend; Cat. No. 
350808) in 50ul of Fe Block at room temperature for 45 min. Coverslips were then washed once with DPBS for 5 min, incubated with 
1 ug/ml Hoechst 33342 (Thermo Fisher Scientific; Cat. No. H3570) diluted in DPBS at room temperature for 10 min, and then washed 
twice more with DPBS for 5 min each. One drop of Aqua Poly Mount (Polysciences; Cat. No. 18606) 

To evaluate progranulin (GRN) knockdown, pre-differentiated neurons were plated in Cortical Neuron Culture Medium with doxy-
cycline on Day Oat 3.0 x 105 cells per well on poly-L-ornithine-coated 8-well glass-bottom slides (ibidi #80827). On day 5, culture 
medium was aspirated from each well and cells were subsequently washed with PBS. Cells were fixed with 4% paraformaldehyde, 
which was prepared by diluting 16% paraformaldehyde (Electron Microscopy Sciences; Cat. No. 15710) 1 :4 in PBS, at room tem-
perature for 30 min. Paraformaldehyde was removed with a P1000 pipette and collected for proper disposal, and slides were washed 
three times with PBS. Cells were blocked with 3% donkey serum with 0.1 % saponin in PBS at room temperature for 1 h and 
subsequently incubated with goat anti-human progranulin antibody diluted 1 :3000 (R&D Systems #AF2420) and mouse anti-human 
TUJ1 antibody (Biolegend #801201) diluted 1:1000 in blocking buffer at 4° C overnight. Slides were then washed three times with 
PBS and incubated with donkey anti-goat lgG conjugated to AF-488 or AF-647 (Jackson lmmunoResearch #705-545-147 or 
#705-605-147) and donkey anti-mouse lgG conjugated to RRX or AF-488 (Jackson lmmunoResearch #715-295-151 or #715-545-
151) diluted 1 :2000 in blocking buffer at room temperature for 1 h. Slides were again washed three times with PBS, and incubated
with 5 uM DRAQ5 (Thermo Fisher Scientific #62251) in blocking buffer at room temperature for 30 min. 

To evaluate neuronal differentiation, pre-differentiated neurons were resuspended in Cortical Neuron Culture Medium with doxy-
cycline (2 ug/ul), then plated on poly-L-ornithine-coated 96-well culture dishes (Perkin Elmer #6055308) at a density of 7 .5x104 cells/ 
well (n = 6 wells per sgRNA). On day 14, culture medium was aspirated from each well on one set of plates and cells were subse-
quently washed with PBS. Cells were fixed with 4% paraformaldehyde, which was prepared by diluting 16% paraformaldehyde 
(Electron Microscopy Sciences; Cat. No. 1571 0) 1 :4 in PBS, at room temperature for 15 min. Paraformaldehyde was removed 
and collected for proper disposal, and the plate was washed three times with PBS. Cells were blocked with 5% donkey serum 
and 0.1 % Triton X-100 in PBS at room temperature for 2.5 h and subsequently incubated with guinea pig anti-NeuN antibody 
(MilliporeSigma #ABN90) diluted 1:1000 in blocking buffer at 4° C overnight. The plate was then washed three times with PBS and 
incubated with goat anti-guinea pig lgG conjugated to AF-647 (ThermoFisher Scientific #A-21450) diluted 1:1000 in blocking buffer 
at room temperature for 2.5 h. Plates were again washed three times with PBS. Cells without sgRNA were then incubated with 4 uM 
Hoechst 33342 (Thermo #62249) for 30 min at room temperature, and subsequently washed three times with PBS. i3N iPSCs plated 
on lbidi slides were stained alongside the neurons for comparison. For NeuN quantification, stained neurons were imaged with a spin-
ning disk confocal microscope with a motorized stage (Nikon Eclipse Ti), controlled using Nikon Elements software. A 20X objective 
was used to acquire a series of 36 slightly overlapping images within each well followed by image stitching. 

DNA damage assay 
CRISPRi-i3N iPSCs were infected by non-targeting sgRNA or 2 different MAT2A sgRNAs for 48hrs on Matrigel-coated 96-well plates. 
Cells with no treatment and with 1 uM Etoposide treatment for 6hrs were used as negative and positive controls, respectively. These 
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cells were fixed by 4% paraformaldehyde for 15 mins followed by permeabilization by 0.1 % Triton for 10 mins. After that, the cells 
were blocked with 5% goat serum and 0.1 % Triton X-100 in PBS at room temperature for 1 hand subsequently incubated with mouse 
anti- H2AX pS139 antibody (Millipore #05-636) diluted in blocking buffer at a final concentration of 2 µg/ml overnight at 4 degree. 
Following incubation, the cells were washed three times with PBS and incubated with goat anti-mouse lgG conjugated to Alexa Fluor 
488 (Abeam, Cat#ab150113) at room temperature for 1 hr. Cells were then washed three times with PBS. Untreated cells and Etopo-
side treated cells were incubated with 1 uM Hoechst 33342 (Thermo #62249) for 30 min at room temperature. For quantification, 
stained iPSCs were imaged using an lnCell 6000 (GE Cat# 28-9938-51) at 60X and H2AX foci were quantified using CellProfiler (Car-
penter et al., 2006). 

Calcium Imaging 
i3N iPSCs and CRISPRi-i3N iPSCs were lentivirally transduced with the GCaMP6m vector (11). These polyclonal iPSCs were 
passaged and plated at a density of 5.0x104 cells/well in Matrigel-coated 6-well culture plates. Shortly afterward, half of the wells 
with iPSCs were transduced with lentivirus containing non-targeting sgRNA. The following day, media was changed to EB+ RI. 
Two days after infection, the media was changed to EB+ 12 ug/ml puromycin (Sigma #P9620-10ML) to select for transduced cells. 

Following selection for 3-4 additional days, the iPSCs were passaged into fresh Matrigel-coated 6-well culture plates at a high den-
sity and allowed to differentiate in Induction Medium with doxycycline (2 ug/ml) for 3 days, with daily media changes. 

Following the 3 days of differentiation, these partially-differentiated neurons were passaged and resuspended in Cortical Neuron 
Culture Medium with doxycycline (2 ug/ul), then plated on poly-L-ornithine-coated 96-well culture dishes (Perkin Elmer #6055308) at 
a density of 7.5x104 cells/well (n = 6 wells per sgRNA). For the remainder of the experiment before imaging, half of the culture medium 
was removed and an equal volume of fresh medium was added three times per week. On day 28, half of the culture medium was 
aspirated from each well. Neurons were imaged with a spinning disk confocal microscope with a 37° C heated chamber and a motor-
ized stage (Nikon Eclipse Ti), controlled using Nikon Elements software. A 20X objective was used to acquire 30 s movies of one field 
per well (n = 4-6 wells) at approximately 5 frames/second. Following the initial acquisition, culture medium containing CNQX (Tocris 
#1045) at a final concentration of 50 uM was added to each well. Beginning 1 min after CNQX addition, the same fields were imaged 
as previously. 

Primary CRISPRi screen 
The CRISPRi v2 H1 library with top 5 sgRNAs per gene (Horlbeck et al., 2016) was packaged into lentivirus for transduction of iPSCs 
as follows. Two 15-cm dishes were each seeded with 8 x 106 HEK293T cells in 20 m l  DMEM complete (basal medium supplemented 
with 10% FBS and 1 % penicillin/streptomycin). The next day, H1 library transfection mix was prepared in the following manner: 1 0ug 
H1 library plasmid and 10ug third generation packaging mix (1 :1 :1 mix of the three plasmids) were diluted into 2 m l  Opti-MEM I 
Reduced Serum Medium (GIBCO; Cat. No. 31985070); 250ul Lipofectamine 2000 Transfection Reagent (lnvitrogen; Cat. No. 
11668027) was diluted into 2 m l  Opti-MEM and incubated at room temperature for 5 min; the diluted DNA solution was added to 
the diluted Lipofectamine solution, inverted several times to mix, and incubated at room temperature for 15 min. Following incuba-
tion, half of the transfection solution was gently added dropwise to each 15-cm dish with HEK293T cells, and the plates were briefly 
and gently moved in a figure-eight pattern to mix. Eight hours later, the Lipofectamine-containing media on each dish was carefully 
aspirated and replaced with 20ml DMEM complete supplemented with 40ul  ViralBoost (Alstem; Cat. No. VB100; diluted 1 :500 in 
media). Two days later, HEK293T media (approximately 40ml) was transferred to a 50ml conical and centrifuged at room temper-
ature for 10 min at 300 g to pellet cell debris. The supernatant was carefully transferred to a syringe fitted with a 0.45um filter in order 
to filter the virus-containing solution into a new 50ml conical. Approximately 10ml of cold Lentivirus Precipitation Solution (Alstem; 
Cat. No. VC100) was added to this filtered solution, which was then mixed well and stored at 4° C for 48 h. Following incubation, the 
solution was centrifuged at 4° C for 30 min at 1,500 g, and the supernatant was decanted. A second centrifugation at 4° C for 5 min at 
1,500 g was performed, and the remaining supernatant was removed with a P1000 pipette. The virus-containing pellet was resus-
pended in 20ml Essential 8 iPSC medium with ROCK inhibitor. 

For infection with the H1 library, two T175 Matrigel-coated flasks were each seeded with 2 x 107 CRISPRi-i3N iPSCs in 10ml of the 
virus-containing medium and left in the tissue culture hood for 15 min to allow even distribution and attachment before moving to the 
incubator. Six hours later, an additional 15ml of Essential 8 medium with ROCK inhibitor was added to each flask without removing 
the virus-containing medium. The next day, we performed a complete media change on all flasks, adding 35ml Essential 8 medium 
with ROCK inhibitor to allow the cells to recover and proliferate. One day later, we released the cells and seeded four T175 Matrigel-
coated flasks each with 1 x 107 cells in 20ml Essential 8 medium with ROCK inhibitor, which was the medium volume and formu-
lation used for puromycin treatment to enrich sgRNA-expressing cells. The initial MOI, quantified as the fraction of BFP-positive cells 
by flow cytometry, was~ 15%, corresponding to a library representation of ~450 cells per library element. Puromycin treatment pro-
ceeded in the following manner: two days with 0.8ug/ml puromycin, followed by two days with 1 ug/ml puromycin. At the end of 
treatment, cells were assessed by flow cytometry (83% expressed high levels of BFP) and seeded for the iPSC and neuronal survival 
screens, which are described below. 

For the iPSC growth-based screen, two T175 Matrigel-coated flasks were each seeded with 1 x 107 cells in 20ml Essential 8 
medium with ROCK inhibitor (time point t0), corresponding to a library representation of ~1,200 cells per library element. Approxi-
mately 2 x 107 t0 cells were also snap frozen in liquid nitrogen for downstream sample preparation to represent the Day 0 sample, 
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corresponding to a library representation of ~ 1,200 cells per library element. Media was replaced on day two (t2) , omitting ROCK 
inhibitor. Cells were released on day three (t3) , and each replicate was seeded into two new T175 Matrigel-coated flasks with 1 x 
107 cells each in 20ml  Essential 8 medium with ROCK inhibitor. Media was replaced on day five (t5), omitting ROCK inhibitor. Cells 
were released on day six (t6) , cells within the same replicate were mixed across flasks, and each replicate was seeded into two new 
T175 Matrigel-coated flasks with 1 x 107 cells each in 20ml Essential 8 medium with ROCK inhibitor. Media was replaced on days 
eight (t8) and nine (t9) , omitting ROCK inhibitor. Cells were released on day ten (t10) , cells within the same replicate were mixed across 
flasks, and 4 x 107 cells from each replicate were snap frozen for downstream sample preparation, corresponding to a library rep-
resentation of ~2,500 cells per library element 

For the neuronal survival screen, twelve 10-cm Matrigel-coated dishes were each seeded with 4 x 106 iPSCs in N2 Pre-Differen-
tiation Medium (day -3)  and differentiated as previously described. However, an additional full media change (10ml) was performed 
on Day 4 to remove cellular debris that started to appear. On Days 14, 21, and 28, dead (floating cells) were removed and live 
(adherent) cells from two 10-cm dishes were harvested per replicate per time point. Since neuronal death occurred over time, the 
estimated library representation for these time points was ~410 cells/library element on Day 14, ~380 cells/library element on 
Day 21, and ~330 cells/library element on Day 28. Adherent cells were released by papain as previously described, and pelleted cells 
were snap frozen for downstream sample preparation. Genomic DNA was extracted with the NucleoSpin Blood L or XL kits (Ma-
cherey Nagel; Cat. No. 7 40954.20 or 7 40950.10, respectively) and samples were prepared for sequencing on an lllumina HiSeq-
4000 based on previously described protocols (Gilbert et al., 2014; Kampmann et al., 2014). 

Pooled validation screen 
192 sgRNAs, including 184 sgRNAs targeting 92 selected hit genes from the primary screen (two sgRNAs per gene) and 8 non-tar-
geting control sgRNAs, were individually cloned into the secondary screening vector pMK1334 and verified by Sanger sequencing. 
The plasmid was pooled and lentivirus was produced as for the Primary Screen. CRISPRi-i3N iPSCs were transduced with the pool at 
70% MOI (quantified as fraction of BFP-positive cells by flow cytometry) and were transduced cells selected by 1 ug/ml of puromycin 
to obtain a population of cells that was ~85% BFP-positive. Following 3 days of expansion, approximately 2 million of these cells 
were harvested as Day 0 sample (corresponding to a library representation of ~9,000 cells/library element) and the rest of cells 
were cultured as iPSCs (as described in 'Human iPS cell culture') or differentiated into glutamatergic neurons (as described in 'Human 
neuronal culture'). For the iPSC growth screen, iPSCs were cultured in E8 medium with daily medium change in two T25 flasks as 
duplicates and were passaged every 2-3 days till Day 10. Approximately 2 million of Day 10 iPSCs from each replicate were har-
vested, corresponding to a library representation of ~9,000 cells/library element. For the mono-culture neuronal screen, 10 million 
of pre-differentiated neurons were plated in one Poly-D-Lysine coated 15-cm dish (Corning; Cat. No. 354550). Two replicate dishes of 
neurons were cultured in Classic Neuronal Medium as described in 'Human neuronal culture'. Live neurons were harvested on Day 14 
and Day 28 neurons as described for the primary screens; the library representation was ~35,000 cells/ library element on Day 14 
and ~28,000 cells / library element on Day 28. For the co-culture neuronal screen, 1.5 million of primary mouse astrocytes were 
added into one Poly-D-Lysine coated 15-cm dish containing 7.5 million neurons. Two replicate dishes of neurons in co-culture 
were cultured as described in 'Astrocyte co-culture'. Day 14 neurons from each replicate of co-culture experiment were harvested, 
the library representation was ~50,000 neurons/library element. Genomic DNA was isolated from all harvested samples using a com-
mercial kit (Macherey Nagel; NucleoSpin® Blood). The sgRNA-encoding region were then amplified and sequenced as in the Primary 
Screen. 

CROP-Seq 
CRISPRi-i3N iPSCs were infected with a pool of selected sgRNAs in the CROP-Seq vector pMK1334 at a low multiplicity of infection 
to minimize double infection. After puromycin selection and expansion, cells were either passaged as iPSCs or differentiated into 
neurons. Approximately 20,000 iPSCs and 20,000 day 7 i3Neurons were captured by the 1 OX Chromium Controller using Chromium 
Single Cell 3' Library & Gel Bead Kit v2 (1 OX Genomics; Cat. No. 120267) with 10,000 input cells per lane. Sample prep was performed 
according to protocol, holding 10-30 ng full-length cDNA for sgRNA-enrichment PCR. 

To facilitate sgRNA assignment, sgRNA-containing transcripts were additionally amplified by hemi-nested PCR reactions by 
adapting a previously published approach (Hill et al., 2018). Briefly, in the first PCR reaction, 15ng of full-length cDNA was used 
as template and Enrichemnt_PCR_ 1_For and Enrichemnt_PCR_ 1_Rev were used as primers. PCR product was cleaned up by 
1.0x SPRI beads (SPRlselect; BECKMAN COULTER; Cat. No. 823317) and 1 ng cleaned product was input into the second PCR re-
action using Enrichemnt_PCR_2_For and Enrichemnt_PCR_2_Rev as primers. Following 1.0x SPRI beads clean up, 1 ng of the PCR 
product from the second PCR reaction was used as template in the final PCR, in which reverse primer Enrichemnt_PCR_2_Rev and a 
forward primer, Enrichemnt_PCR_3_For, containing an i7 index, were used as primers. All PCR reactions were carried out for 18 cy-
cles using KAPA Hi Fi polymerase (KAPA Hi Fi HotStart ReadyMix (2X); Cat. No. KK2602) with annealing temperature at 62 degree and 
15 s extension per cycle. The sgRNA-enrichment libraries were separately indexed and sequenced as spike-ins alongside the whole-
transcriptome scRNA-Seq libraries using NovaSeq 6000 using the following configuration: 

Read 1: 26, i7 index: 8, i5 index: 0, Read 2: 98 
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Quant-Seq 
Neurons cultured in 12-well plates were released with papain, pelleted, and snap frozen on days 0, 14, 21, 28, and 35 in technical 
duplicates (approximately 2 x 105 cells each) per time point. RNA was extracted using the Quick-RNA Miniprep Kit (Zymo; Cat. 
No. R1054), and RNA concentrations were determined with the Qubit RNA HS Assay Kit (lnvitrogen; Cat. No. 032855) on a Qubit 
2.0 Fluorometer (lnvitrogen; Cat. No. 032866). mRNA-Seq libraries were prepared from an input of 184ng total RNA in 5 u l  using 
the QuantSeq 3' mRNA-Seq Library Prep Kit FWD for lllumina (Lexogen; Cat. No. 015). Briefly, oligodT hybridization enabled 
mRNA-selective reverse transcription. The original RNA template was then degraded, and second strand cDNA synthesis was 
achieved by random priming and extension by DNA polymerase. Samples were subsequently subjected to magnetic bead-based 
purification, followed by library amplification with indexed flow-cell adapters (14 PCR cycles) and another round of magnetic 
bead-based purification. mRNA-Seq library concentrations (mean of 1.01 ± 0.275 ng/uL) were measured with the Qubit dsDNA 
HS Assay Kit (lnvitrogen; Cat. No. Q32851) on a Qubit 2.0 Fluorometer. Library fragment-length distributions (mean of 
371 ± 16.1 bp) were quantified with the High Sensitivity DNA Kit (Agilent; Cat. No. 5067-4626) on a 2100 Bioanalyzer Instrument (Agi-
lent; Cat. No. G2939BA). Molar concentrations for each sample were approximated from Qubit concentration (ng/ul) and mean frag-
ment-length (bp) measurements using the following formula: 

M I C 
. (Qubit Concentration)(1, 000, 000 uL/L) oar  oncentrat,on =  - - - -  - - - - - - - - - -

(660 
n,g 

b ) (Mean Fragment Length)nmo * p 

All libraries were diluted to 2. 72nM for equimolar representation in the final, pooled sample. Single-end sequencing was performed, 
generating reads toward the poly(A) tail. 

Longitudinal CRISPRi-i3Neuron imaging screen 
CRISPRi-i3N iPSCs were transduced with lentivirus expressing mNeonGreen-NLS and FAGS-sorted for the brightest green popula-
tion. These polyclonal cells will be referred to as nuclear-green CRISPRi-i3 N iPSCs. Subsequently, a fraction of these iPSCs were 
transduced with lentivirus expressing cytosolic mScarlet and FAGS sorted for the brightest red and green cells. These polyclonal 
iPSCs will be referred to as the nuclear-green/cytosolic red CRISPRi-i3N iPSCs. 

The arrayed sgRNAs in the pMK1334 vector were packaged into lentivirus for transduction of iPSCs as follows: 6-well 
plates coated with poly-D-lysine were seeded with 2.5 x 106 HEK293T cells per well in 1.5 m l  of DMEM complete (basal medium 
supplemented with 10% FBS) each. The next day, the arrayed transfection mixes were prepared in the following manner: 1.2ug 
sgRNA plasmid and 1.2 ug packaging mix (0.8ug psPAX2, 0.3ug pMD2G, 0.1 ug pAdVantage), along with 5 u l  P3000 reagent 
(ThermoFisher Scientific # L3000015) were diluted into 150 u l  Opti-MEM I Reduced Serum Medium (GIBCO; Cat. No. 31985070); 
3.75 u l  Lipofectamine 3000 Transfection Reagent (ThermoFisher Scientific# L3000015) was diluted into 150 u l  Opti-MEM and 
incubated at room temperature for 5 min; the diluted Lipofectamine solution was added to the diluted DNA solution, flicked to 
mix, and incubated at room temperature for 20 min. Following incubation, the transfection solutions were gently added dropwise 
to each well with HEK293T cells, and the plates were briefly and gently moved in a figure-eight pattern to mix. The following day, 
the Lipofectamine-containing media on each well was carefully aspirated and replaced with 3 m l  DMEM complete supplemented 
with 6 u l  Viral Boost (Alstem; Cat. No. VB100; diluted 1 :500 in media). Three days later, HEK293T media from each well was trans-
ferred to one well each of two 2 m l  deep 96-well dishes (USA Scientific #1896-2800) and centrifuged at 4° C for 30 min at 3428 g 
to pellet cell debris. Viral supernatant was stored at 4° C. 

For functional titering of the lentivirus, nuclear-green+ CRISPRi-i3N iPSCs were passaged and plated at a density of 1.0 x 104 cells/ 
well in Matrigel-coated 96-well culture dishes. Following adherence of iPSCs, 75 u l  of each viral supernatant was added to one well, 
and a series of half-volume dilutions was performed for a total of four dilutions. The following day, the culture medium containing the 
lentivirus was carefully aspirated and replaced with fresh medium. Three days after infection, iPSCs were imaged with a spinning disk 
confocal microscope with a motorized stage (Nikon Eclipse Ti), controlled using Nikon Elements software. A 20X objective was used 
to acquire a series of 36 slightly overlapping images within each well followed by image stitching. The ratio of cells infected with lenti-
virus was quantified via Nikon Elements software as the number of green nuclei with blue signal above an intensity threshold divided 
by the total number of green nuclei. The volumes of viral supernatant used in all subsequent infections were adjusted based on the 
differences between infection ratios. 

Nuclear-green+ cytosolic red+ CRISPRi-i3N iPSCs were passaged and plated at a density of 2.5x104 cells/well in Matrigel-coated 
12-well culture plates. Shortly afterward, the iPSCs were transduced with lentivirus containing individual sgRNAs. The following day, me-
dia was changed to E8 +RI.Two days after infection, the media was changed to E8 + puromycin (12 ug/ml) to selectfortransduced cells. 

Following selection for 3-4 additional days, the iPSCs were passaged into fresh Matrigel-coated 12-well culture plates at a high 
density and allowed to differentiate in Induction Medium with doxycycline (2 ug/ml) for 3 days, with daily media changes. Concur-
rently, the uninfected nuclear-green CRISPRi-i3N iPSCs were differentiated alongside the infected nuclear-green+blue/cytosolic red 
CRISPRi-i3N iPSCs. 

Following the 3 days of differentiation, these partially-differentiated neurons were passaged and resuspended in Cortical 
Neuron Culture Medium with doxycycline (2 ug/ul), then plated on poly-L-ornithine-coated 96-well culture dishes (Perkin Elmer 
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#6055308) at a density of 5.0x104 cells/well (n = 6 wells per sgRNA for most, 3-5 for some). The nuclear-green+blue/cytosolic red 
CRISPRi-i3Neurons were spiked in at a density of 1 :20 with the nuclear-green CRISPRi-i3Neurons to facilitate tracing of neurites while 
maintaining trophic support of higher-density neuron cultures. Following plating, we waited for adherence of neurons before imaging 
for the first time. For the remainder of each longitudinal imaging experiment, half of the culture medium was removed and an equal 
volume of fresh medium was added three times per week. 

For each time point, CRISPRi-i3Neurons were imaged with a spinning disk confocal microscope with a motorized stage (Nikon 
Eclipse Ti), controlled using Nikon Elements software. A 20X objective was used to acquire a series of 25 slightly overlapping images 
within each well followed by image stitching. Between imaging sessions, plates were incubated in a traditional water-jacketed 5% 
CO2 incubator at 37° C. 

Longitudinal iPSC imaging screen 
Nuclear-green CRISPRi-i3N iPSCs were passaged and plated in Matrigel-coated 96-well culture dishes at a density of 1,000 cells/well. 
Following adherence, iPSCs were transduced with lentivirus (same preparation as for the longitudinal neuronal imaging) containing in-
dividual sgRNAs (n = 3 wells per sgRNA). The following day, media was changed to E8 + ROCK inhibitor. Starting two days after infec-
tion, iPSCs were imaged with a spinning disk confocal microscope with a motorized stage (Nikon Eclipse Ti), controlled using Nikon 
Elements software. A 20X objective was used to acquire a series of 36 slightly overlapping images within each well followed by image 
stitching. Between imaging sessions, plates were incubated in a traditional water-jacketed 5% CO2 incubator at 37° C. 

Longitudinal imaging for CRISPRi toxicity 
i3N iPSCs and inducible CRISPRi-i3N iPSCs were transduced with lentivirus expressing only mNeonGreen-NLS, and/or with lentivirus 
expressing cytosolic mScarlet. These polyclonal iPSC groups will be referred to as the nuclear-green iPSCs and nuclear-green/cyto-
solic red iPSCs, respectively. Nuclear-green/cytosolic red iPSCs were passaged and plated at a density of 5.0x104 cells/well in Ma-
trigel-coated 6-well culture plates. Shortly afterward, half of the wells with iPSCs were transduced with lentivirus containing non-tar-
geting sgRNA. The following day, media was changed to E8 +RI.Two days after infection, the media was changed to E8 + puromycin 
(12 ug/mL) to select for transduced cells. Following selection for 3-4 additional days, the iPSCs were passaged into fresh Matrigel-
coated 12-well culture plates at a high density and allowed to differentiate in Induction Medium with doxycycline (2 ug/ml) for 3 days, 
with daily media changes. Concurrently, the uninfected nuclear-green iPSCs were differentiated alongside the nuclear-green/cyto-
solic red iPSCs. Following the 3 days of differentiation, these partially-differentiated neurons were passaged and resuspended in 
Cortical Neuron Culture Medium with doxycycline (2 ug/uL), then plated on poly-L-ornithine-coated 96-well culture dishes (Perkin 
Elmer #6055308) at a density of 5.0x104 cells/well (n = 6 wells per sgRNA). The inducible CRISPRi-i3N neurons were plated in two 
groups, with or without 20 uM TMP (Sigma #92131-5G) in the culture medium. The nuclear-green/cytosolic red neurons were spiked 
in at a density of 1 :20 with the nuclear-green neurons to facilitate tracing of neurites while maintaining trophic support of higher-den-
sity neuron cultures. Following plating, we waited for adherence of neurons before imaging for the first time. Fort he remainder of each 
longitudinal imaging experiment, half of the culture medium was removed and an equal volume of fresh medium was added three 
times per week. For each time point, neurons were imaged with a spinning disk confocal microscope with a motorized stage (Nikon 
Eclipse Ti), controlled using Nikon Elements software. A 20X objective was used to acquire a series of 25 slightly overlapping images 
within each well followed by image stitching. Between imaging sessions, plates were incubated in a traditional water-jacketed 5% 
CO2 incubator at 37° C. 

Pharmacological validation of HMGCR phenotype 
CRISPRi-i3N cells infected with non-targeting control sgRNA or HMGCR sgRNA were seeded into 96- or 384-well plates on Day O into 
Brainphys media containing mevastatin (compactin, Sigma #M2537) or mevalonate (Sigma #M4667) at the concentrations indicated 
in Figures 2E and 2F. Images were taken daily and half-media changes performed every second day, with half-concentrations of the 
treatments used when refreshing media. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Quant-Seq analysis 
Fastq files were uploaded to and processed through the cloud-based BlueBee Genomics Platform (https://www.bluebee.com/ 
quantseq). Briefly, raw reads were trimmed with Bbduk, aligned with STAR Aligner, and counted with HTSeq-count to yield gene 
counts. Differential expression analyses were performed with the DESeq2 pipeline, which compared counts from each set of dupli-
cates at different time points to counts from the day O time points. Additional, custom analysis pipelines were devised in R. We devel-
oped a simple web application with the Shiny R package that enables users to visualize normalized read counts and expression fold 
change (relative to day O) throughout neuronal differentiation for a queried gene. The web application can be accessed via https:// 
kampmannlab.ucsf.edu/ineuron-rna-seq. 
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Primary screen analysis 
We developed a bioinformatics pipeline, MAGeCK-iNC (MAGeCK including Negative Controls) for large-scale functional genomics 
analysis, which we made publicly available (kampmannlab.ucsf.edu/mageck-inc). First, raw sequencing reads from next-generation 
sequencing were cropped and aligned to the reference using Bowtie (Langmead et al., 2009) to determine sgRNA counts in each 
sample. Next, counts files of two samples subject to comparison were input into MAGeCK and log2 fold changes (LFCs) and p values 
were calculated for each sgRNA using the 'mageck test-k '  command. Following that, gene level knockdown phenotype scores were 
determined by averaging LFCs of the top 3 sgRNAs targeting this gene with the most significant p values. The statistical significance 
for each gene was determined by comparing the set of p values for sgRNAs targeting it with the set of p values for non-targeting 
control sgRNAs using the Mann-Whitney U test, as described previously (Kampmann et al., 2013, 2014). To correct for multiple hy-
pothesis testing, we first performed random sampling of 5 with replacement from non-targeting control sgRNAs to generate 'nega-
tive-control-quasi-genes' and calculated knockdown phenotype scores and p values for each of them. Then, we calculated the hit 
strength, defined as the product of knockdown phenotype score and -log (p value), for all genes in the library and for 'negative-con-
trol-quasi-genes' generated above. Based on the distribution of all the products, a cutoff value was chosen to make sure the false-
discovery rate (FDR) is less than 0.05. To find enriched annotations within hit genes, Gene Set Enrichment Analysis (GSEA) was per-
formed for Day 10 iPSCs and Day 28 neurons using the fgsea package in R (Sergushichev, 2016). 

Pooled validation screen analysis 
sgRNA counts for each sample were determined as in primary screen. Subsequently, knockdown phenotype scores for each sgRNA 
were calculated as LFCs of sgRNA counts between two samples and were normalized by subtracting the median of non-targeting 
control sgRNAs. LFCs were averaged for samples with replicates. Gene-level knockdown phenotype score was determined as the 
mean of knockdown phenotype scores of all sgRNAs targeting this gene. 

CROP-Seq analysis 
Cell Ranger (version 2.2.0, 1 OX Genomics) with default parameters was used to align reads and generate digital expression matrices 
from single-cell sequencing data. To map sgRNA transcripts together with other mRNA transcripts to individual cells, a custom refer-
ence was generated by extending the human genome assembly (Ensembl GRCh38 release) with 'quasi-genes' representing sgRNA-
containing transcripts (one sgRNA sequence per quasi-gene with 250bp upstream and 230bp downstream sequences). Sequencing 
results of sgRNA-enrichment libraries were analyzed using methods previously described (Hill et al., 2018) to further facilitate sgRNA 
identity assignment. 

For a given cell, sgRNA(s) whose UMI counts were greater than 4 standard deviations of the mean UMI counts of all sgRNAs were 
assigned to that cell as its identity. Cells with only one assigned sgRNA were retained for further analysis. The Seater package 
(McCarthy et al., 2017) implemented in R was used to analyze the digital expression matrices including normalization, quality control 
and filtering. 

The mean reads per cell was around 84,000 for iPSCs and 91,000 for neurons. Median number of genes detected per cell was 
around 5,000 for iPSCs and 4,600 for neurons. After quality control, a single sgRNA could be assigned to ~15,000 iPSCs and 
~8,400 neurons 

For each target gene, the top 50% cells with best on-target knockdown were retained. Differential gene expression analysis was 
performed between each gene knockdown group (cells assigned by targeting sgRNAs of that gene) and control group (cells assigned 
by non-targeting control sgRNAs) using the R package edgeR (Robinson et al., 2010) treating each cell as one replicate. 

For Figure 4C, relative expression of each gene was calculated asz-normalized expression with respect to the mean and standard 
deviation of that gene in the control group: 

Xnormalized 
= X - µcontrol 

Ucontrol 

The top 20 most significantly altered genes were selected for each gene knockdown group and merged together to form the signature 
gene list. Gene knockdown groups were hierarchically clustered based on their relative expression of the signature genes, using 
Cluster 3.0 (Eisen et al., 1998) and visualized using Java TreeView (Saldanha, 2004). 

For Figure 6E, GSEA was performed using the web tool WebGestalt (Zhang et al., 2005). For Figures S5C and S5D, the similarity 
score of transcriptome changes between two gene knockdown groups, A and B, was calculated as follows: 

. . . IAup n Bup I + JAdown n Bdown I s,m,lantyAB = � - - - � - - - - - -' IAup U Bup I + JAdown U Bdown J

Aup and Bup denote for the significantly upregulated genes (Padi < 0.01) in A and B, while Adown and Bdown denote for the significantly 
downregulated genes (Padi < 0.01) in A and B. 

Longitudinal imaging data analysis 
A CellProfiler (Carpenter et al., 2006) pipeline was developed to analyze longitudinal imaging data. For iPSC growth and i3Neuron 
survival experiments, sgRNA+ cells were recognized as nuclear -green+ blue+ objects and the total number of sgRNA+ cells was 
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quantified for every image. iPSC growth and i3Neuron survival were calculated as the ratio of sgRNA+ cell number at different 
time points to that of day 1 of imaging. For neurite morphology analysis, neurites of sgRNA+ cells were first enhanced by the 
EnhanceOrSuppressFeatures and EnhanceEdges modules, and then skeletonized by the Morph module. Following that, 
MeasureObjectSkeleton module was implemented to measure neurite length, number of branches and number of trunks for individ-
ual neurons. The mean values of the above measurements of all sgRNA + neurons were calculated for each image. 

To integrate all image analysis data, we generated a panel of imaging phenotypes for a given sgRNA, including neurite length, num-
ber of neurite branches, number of neurite trunks, neuronal survival and iPSC growth at different time points. For Figure 7E, the per-
centage changes of imaging phenotypes compared to the mean of non-targeting control sgRNAs were calculated for each sgRNA. 
Most of genes in the imaging experiment were targeted by two sgRNAs (some genes missed one sgRNA during experiment process), 
and a gene was discarded if it was targeted by two sgRNAs and the correlation of the two sgRNAs was less than 0.8. All remaining 
sgRNAs were hierarchically clustered based on the Pearson correlation of their percentage changes of imaging phenotypes, using 
Cluster 3.0 (Eisen et al., 1998) and visualized using Java TreeView (Saldanha, 2004). 

Calcium Imaging Analysis 
Representative GCaMP6m movies for each cell group were chosen manually, after viewing all movies for each group. Representative 
movies before and after CNQX addition were merged sequentially and aligned using Nikon Elements software. For each merged and 
aligned movie, ROls were drawn manually with Fiji (Schindelin et al., 2012) around every clearly visible cell body, and the mean gray 
value was measured for each ROI in each frame. For each ROI, �F/F was calculated using the average of the 5 frames with the lowest 
values as the baseline. 

DATA AND CODE AVAILABILITY 

The accession number for the RNA sequencing datasets reported in this paper is GEO: GSE124703 (https://www.ncbi.nlm.nih.gov/ 
geo/query/acc.cgi?acc=GSE124 703). 

Expression levels of genes of interest at different time points during neuronal differentiation can be visualized interactively at 
https://kampmannlab.ucsf.edu/ineuron-rna-seq. 

Longitudinal imaging data files will be made available on request to the lead author. 
The MAGeCK-iNC bioinformatics pipeline is available at https://kampmannlab.ucsf.edu/mageck-inc. 
The Cell Profiler pipeline for analysis of neuronal longitudinal imaging data will be made available on request to the lead author, and 

will also be submitted to the CellProfiler depository of published pipelines (https://cellprofiler.org/examples/published_pipelines. 
html) upon publication. 
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