JBC Papers in Press. Published on November 12, 2019 as Manuscript RA119.010623 The latest version is at http://www.jbc.org/cgi/doi/10.1074/jbc.RA119.010623

YAEL ALIPPE 3/17/2020 JOURNAL CLUB

The nonreceptor tyrosine kinase SYK induces autoinflammatory osteomyelitis in a mouse model of chronic recurrent multifocal osteomyelitis

Tejasvi K Dasari^{1,2 Ψ}, Rechel Geiger^{1 Ψ}, Rajendra Karki¹, Balaji Banoth¹, Bhesh Raj Sharma¹, Prajwal Gurung^{1,3}, Amanda Burton¹, and Thirumala-Devi Kanneganti^{1,*}

From the ¹Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; ²School of Medicine, Baylor College of Medicine, Houston, TX 77030; ³Inflammation Program, University of Iowa, Iowa City, IA 52241

 $^{\Psi}$ These authors have contributed equally to this work.

Running title: Targeting SYK prevents disease in Pstpip2^{cmo} mice

*To whom correspondence should be addressed: Thirumala-Devi Kanneganti: Department of Immunology, St Jude Children's Research Hospital, MS #351, 570, St. Jude Place, Suite E7004, Memphis TN 38105-2794; <u>Thirumala-Devi.Kanneganti@StJude.org</u>; Tel. (901) 595-3634; Fax. (901) 595-5766.

Keywords: inflammation, chronic recurrent multifocal osteomyelitis (CRMO), spleen tyrosine kinase (Syk), inflammasome, NLRP3, IL-1 β , caspase-1, caspase-8, chronic multifocal osteomyelitis (*cmo*), autoimmunity

ABSTRACT

Chronic recurrent multifocal osteomyelitis (CRMO) in humans can be modeled in Pstpip2^{cmo} mice, which carry a missense mutation in the proline-serine-threonine phosphatase-interacting protein 2 (Pstpip2) gene. As cmo disease in mice, the experimental model analogous to human CRMO, is mediated specifically by interleukin (IL)-1 β , and not by IL-1 α , delineating the molecular pathways contributing to pathogenic IL-1ß production is crucial to developing targeted therapies. In particular, our earlier findings support redundant roles for NLR family pyrin domaincontaining 3 (NLRP3) and caspase-1 with caspase-8 in instigating cmo. However, the signaling components upstream of caspase-8 and pro-IL-1β cleavage in $Pstpip2^{cmo}$ mice are not well understood. Therefore, here we investigated the signaling pathways in these mice and discovered a central role of a nonreceptor tyrosine kinase spleen tyrosine kinase (SYK) in mediating osteomyelitis. Using several mutant mouse strains, immunoblotting, and microcomputed tomography (micro-CT), we demonstrate that absent in melanoma 2 (AIM2), receptor-interacting serine/threonine protein kinase 3 (RIPK3), and

caspase recruitment domain-containing protein 9 (CARD9) are each dispensable for osteomyelitis induction in *Pstpip2^{cmo}* mice, whereas genetic deletion of *Syk* completely abrogates the disease phenotype. We further show that SYK centrally mediates signaling upstream of caspase-1 and caspase-8 activation and principally up-regulates NF- κ B and IL-1 β signaling in *Pstpip2^{cmo}* mice and thereby induces *cmo*. These results provide a rationale for directly targeting SYK and its downstream signaling components in CRMO.

Autoinflammatory bone diseases including chronic recurrent multifocal osteomvelitis (CRMO), osteoporosis, Paget's disease, arthritis, and periodontal disease are increasingly pervasive contributors to severe chronic pain, physical disabilities, and morbidity (1). CRMO is primarily a pediatric chronic inflammatory bone disease, with at least 80% of patients experiencing primary symptoms including osteomyelitis and debilitating bone pain (2). Treatment of CRMO is currently limited to nonsteroidal anti-inflammatory drugs escalation to corticosteroids with or bisphosphonates for pain relief (3). However, all current therapeutic options have limited specificity to the pathophysiology underlying CRMO.

To study the molecular mechanisms underpinning disease manifestation, CRMO in humans can be modeled in mice that carry the L98P missense mutation in the Pstpip2 gene. Prolineserine-threonine phosphatase-interacting protein 2 (PSTPIP2), a Fes/CIP4 homology domain and Bin-Amphiphysin-Rvs (F-BAR) family protein involved in regulating membrane and cytoskeletal dynamics (4) is encoded by Pstpip2 on chromosome 18 in both humans and mice and is predominantly expressed in the myeloid lineage (5). The L98P mutation in mice is termed *chronic* multifocal osteomyelitis (cmo), and Pstpip2^{cmo} mice phenotypically characterized are bv autoinflammatory disease involving the bones and resulting in osteomyelitis and bone skin, deformities. The bone lesions in both cmo disease and CRMO are associated with increased IL-1 signaling, osteoclast-mediated resorption, and an elevation of osteoclast precursors (6), but the specific inflammatory pathways critical for disease are not known.

IL-1 β has been established as the principle driver of dysregulated cellular homeostasis, extracellular matrix composition, proinflammatory cytokine production, and osteolysis in a diverse array of autoinflammatory, hematologic, and bone diseases including osteoarthritis (7) and multiple myeloma (8). Inhibition of IL-1 β and IL-1 receptor (IL-1R) signaling has been shown to completely protect against disease in Pstpip2^{cmo} mice (9), suggesting that inhibition of IL-1β, IL-1R, or their upstream regulators could provide significant benefit to patients with autoinflammatory bone disease. It is known that caspase-1-mediated cleavage of pro-IL-1 β is activated by the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domaincontaining 3 (NLRP3) inflammasome (10), and previous studies have established a redundant role for caspase-1 or NLRP3 with caspase-8 in mediating this cleavage and disease progression (11,12). However, the signaling cascade involved in caspase-8 activation remains not well understood.

The nonreceptor tyrosine kinase SYK is a central regulatory molecule in innate immune tolllike receptor and NOD-like receptor signaling pathways (13,14) and inflammatory cytokine secretion (15). SYK is also known to play a role in activating caspase-8, thereby resulting in IL-1β processing (16). Based on the involvement of SYK in the caspase-8 pathway and the importance of caspase-8 in mediating *cmo* disease, we sought to determine the role of SYK signaling in regulating *cmo* disease. Here, we have discovered the mechanistic basis underpinning SYK-dependent induction of autoinflammatory osteomyelitis. Specifically, we show that SYK critically upregulates pro–IL-1 β production responsible for *cmo* disease progression and proinflammatory NF- κ B signaling which contributes to pro–IL-1 β upregulation.

Results

RIPK3 and AIM2 are dispensable for disease progression in Pstpip2^{cmo} mice

The NLRP3 inflammasome plays a redundant role with caspase-8 to promote disease progression in *Pstpip2*^{cmo} mice, indicating NLRP3 is an upstream regulator of caspase-1 activation (12), but understanding of the upstream regulation of caspase-8 activation remains incomplete. Although caspase-8 deficiency is embryonically lethal, caspase-8-deficient mice can be completely rescued through the knockout of receptorinteracting serine/threonine kinase (RIPK) 3 (17-19). In addition, reduced IL-18 production and abolished caspase-8 activation in *Ripk3^{-/-}* bone marrow-derived dendritic cells (BMDCs) suggest that RIPK3 is required for caspase-8 activation and subsequent release of IL-1 β (20). Absent in melanoma 2 (AIM2) acts as an inflammasome sensor for cytosolic DNA, and it activates caspase-1 through the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC). AIM2 induces activation in caspase-1-deficient caspase-8 macrophages in the context of several bacterial infections, including Burkholderia (21).Francisella (22), and Legionella (23). Given their established functions in caspase-8 activation under various conditions, we explored the roles of RIPK3 and AIM2 in mediating caspase-8 activation in Pstpip2^{cmo} mice by analyzing cmo disease progression in NLRP3 and RIPK3-deficient *Pstpip2^{cmo}* mice (*Pstpip2^{cmo}Nlrp3^{-/-}Ripk3^{-/-}*) and NLRP3 and AIM2-deficient Pstpip2^{cmo} mice $(Pstpip2^{cmo}Nlrp3^{-/-}Aim2^{-/-})$. All mice with both genotypes $(Pstpip2^{cmo}Nlrp3^{-/-}Ripk3^{-/-})$ and $Pstpip2^{cmo}Nlrp3^{-/-}Aim2^{-/-})$ developed disease

similarly to *Pstpip2^{cmo}* mice (Fig. 1, A and B). Microcomputed tomography (micro-CT) scans of the inflamed areas revealed extensive reduction in bone density and structural malformation in the feet of these mice (Fig. 1, A and B). Further, massive lymphomegaly was observed in the popliteal lymph nodes draining inflamed footpads (Fig. 1, A and B). These data suggest that RIPK3 and AIM2 are dispensable for disease progression in *Pstpip2^{cmo}* mice.

SYK, but not CARD9, is required for inflammatory disease progression in Pstpip2^{cmo} mice

In addition to the role of SYK in innate pathways immune signaling (13, 14)and inflammatory cytokine secretion (15), recent evidence has indicated the involvement of SYK in a diverse range of biological functions including cellular adhesion, platelet activation, and osteoclast maturation (24). The SYK adaptor protein caspase recruitment domain-containing protein 9 (CARD9) is expressed primarily in lymphoid tissues and contributes to innate immune signaling in response to fungal, viral, and bacterial infections (25-27). Given that SYK and CARD9 are involved in caspase-8 activation and subsequent IL-1ß processing in BMDCs during fungal infection (16). we explored the respective contributions of SYK and CARD9 to disease progression in Pstpip2^{cmo} mice. First, we monitored disease progression in Pstpip2^{cmo}Nlrp3^{-/-}Syk^{fl/fl}LysM^{cre} mice and Pstpip2^{cmo}Nlrp3^{-/-}Card9^{-/-} mice. While Pstpip2^{cmo}Nlrp3^{-/-}Card9^{-/-} mice did not show protection from disease, Pstpip2^{cmo}Nlrp3^{-/-} *Syk*^{fl/fl}*LysM*^{cre} mice displayed nearly complete protection (Fig. 2, A and B). Next, we investigated whether deletion of SYK in *Pstpip2^{cmo}* mice with intact NLRP3 would be sufficient to provide protection from disease. We found that myeloidspecific deletion of SYK alone in *Pstpip2^{cmo}* mice $(Pstpip2^{cmo}Syk^{fl/fl}LysM^{cre})$ provided complete protection from disease (Fig. 2C). The structural bone lesions found by micro-CT and the popliteal Pstpip2^{cmo}, observed lymphomegaly in Pstpip2^{cmo}Nlrp3^{-/-}, and Pstpip2^{cmo}Nlrp3^{-/-}Card9^{-/-} Pstpip2^{cmo}Nlrp3^{-/-} mice were rescued in $Svk^{fl/fl}LvsM^{cre}$ and $Pstpip2^{cmo}Svk^{fl/fl}LvsM^{cre}$ mice (Fig. 2, A-C). Taken together, these data suggest that SYK functions upstream of both caspase-1 and caspase-8 in inducing cmo disease, that SYK is

sufficient and necessary for *cmo* disease induction, and that NLRP3 and CARD9 are dispensable for *cmo* disease progression.

SYK mediates cmo disease by promoting proinflammatory signaling but not inflammasome activation

Disease in *cmo* mice is mediated by the cytokine IL-1 β (9). To investigate the role of SYK in regulating IL-1 β upregulation in *cmo*, we first measured pro-IL-1B expression and SYK activation in the footpads of wild type and Pstpip2^{cmo} mice. Footpads from Pstpip2^{cmo} mice had increased pro-IL-1B expression and SYK activation with respect to those of wild type mice (Fig. 3A). The myeloid-specific deletion of SYK in Pstpip2^{cmo} mice reduced the expression of pro-IL- 1β in footpads to a level similar to that of wild type mice without affecting the expression of caspase-1 or caspase-8 (Fig. 3A). Consistent with these data, the expression of pro-IL-1 β induced by lipopolysaccharide (LPS) treatment was increased in bone marrow-derived macrophages (BMDMs) derived from *Pstpip2^{cmo}* mice relative to that of BMDMs from wild type mice (Fig. 3B). The increased pro–IL-1 β expression in *Pstpip2^{cmo}* mice correlated with activation of SYK. The myeloidspecific deletion of SYK in Pstpip2^{cmo} mice abolished the increased induction of pro-IL-1 β in BMDMs upon LPS stimulation relative to Pstpip2^{cmo} BMDMs without affecting the expression of caspase-1 and caspase-8 (Fig. 3B). These findings suggest a primary role for SYK in mediating pro-IL-1ß production and *cmo* disease progression.

We next sought to identify additional intracellular signaling pathways mediated by SYK signaling contributing to the induction of pro-IL-18 expression and excessive inflammation in Pstpip2^{cmo} mice. Recent evidence has demonstrated that mitogen-activated protein (MAP) kinases ASK1 and ASK2 centrally regulate NF-KB and downstream MAP kinases, including JNK, ERK, and p38, to drive autoinflammatory disease progression in the Ptpn6^{spin} mouse model of neutrophilic dermatosis (28). We hypothesized that NF-kB and MAP kinase signaling promote cmo disease progression and that SYK plays a role in regulating this signaling. Although there was more activation of NF-KB and ERK in the footpads of Pstpip2^{cmo} mice compared with wild type mice,

JNK and p38 were similarly activated (Fig. 3C). However, deletion of SYK reversed the elevated NF- κ B, but not ERK, activation in *Pstpip2^{cmo}* mice, suggesting that NF- κ B plays an important role downstream of SYK to mediate persistent inflammation in *cmo* disease.

Furthermore, SYK has been shown to regulate inflammasome activation and IL-1B maturation downstream of dectin-1 signaling (16). We therefore asked whether SYK regulates both NLRP3 inflammasome and caspase-8 activation upstream of IL-1ß production. We observed similar caspase-1 and caspase-8 cleavage in BMDMs derived from wild type, Pstpip2^{cmo}, and Pstpip2^{cmo}Syk^{fl/fl}LysM^{cre} mice in response to the classical NLRP3 inflammasome trigger LPS + ATP, which was futher supported by the similar gasdermin D (GSDMD) activation observed among these genotypes (Fig. 3D). In addition, we further noticed that SYK deficiency did not affect the expression of GSDMD, NLRP3, and ASC, all of which are crucial components for inflammasome signaling (Fig. 3E). These data suggest that SYK does not regulate the caspase-1 and caspase-8 activation mediated by the classical NLRP3 trigger.

Overall, our data indicate that SYK regulates NF- κ B signaling, but not inflammasome activation, for the induction of pro-IL-1 β to mediate disease progression in *Pstpip2*^{cmo} mice.

Discussion

Cmo has been shown to be mediated by pathological IL-1ß production downstream of NLRP3/caspase-1 and caspase-8 (9,11,12). The disease progression occurs despite single deficiency of either caspase-1 or caspase-8 (12), which suggests the caspases function as part of distinct complexes that are independently activated. Although caspase-1 and caspase-8 have both been shown to colocalize with the AIM2/ASC speck to mediate pro–IL-1 β cleavage (22), AIM2 deficiency did not provide protection in Pstpip2^{cmo} mice, further supporting that in *cmo* disease, caspase-1 and caspase-8 operate and are activated independently in distinct complexes. In this study, we demonstrated that deficiency of SYK in Pstpip2^{cmo} mice prevented the induction of osteomyelitis. SYK signaling upstream of caspase-1 and caspase-8 to promote pro-IL-1ß production centrally mediates cmo disease induction. Thus, it

is interesting that deficiency of the SYK adaptor protein, CARD9, did not provide protection in Pstpip2^{cmo} mice. In addition to promoting pro-IL-1ß synthesis, SYK, but not CARD9, has been shown to regulate NLRP3 inflammasome activation during fungal infection (29). This suggests that the CARD9 pathway selectively transduces SYK signaling to promote pro-IL-1ß synthesis but not inflammasome activation. Additionally, several reports have highlighted the role of SYK in the regulation of the NLRP3- and caspase-8-mediated inflammasomes (16,29,30). However, our data with the canonical NLRP3 trigger LPS + ATP did not reveal a dependency of caspase-1 and caspase-8 processing on SYK. suggesting an exclusively diverse yet specific role for SYK in mediating cmo disease. In this regard, SYK primarily acts as a pivotal regulator of pro-IL-1 β synthesis but not as a regulator of inflammasome activation; however, these two processes both converge towards the production of active IL-1^β. Recent evidence has also established central roles for the NLRP3 inflammasome and IL-1ß signaling in several additional related disorders of nonbacterial osteomyelitis, including Majeed syndrome, synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome, and deficiency of IL-1R antagonist (DIRA) (3,9,12). Our findings provide important context for evaluating the role plays in mediating these SYK related autoinflammatory bone disorders and for the therapeutic potential of SYK inhibitors in this disease spectrum.

The central regulatory role of SYK is not confined to IL-1β-mediated autoinflammatory disease. We have previously reported that SYK licenses MvD88 to induce IL-1 α -mediated inflammatory disease in Ptpn6^{spin} mice (31). Similarly, we observed increased activation of SYK in the absence of PSTPIP2, suggesting that PSTPIP2 functions to suppress SYK signaling. However, the regulatory mechanisms behind SYK activation by PSTPIP2 require further investigation. Recent evidence has established that PSTPIP2 interacts with SHIP1, which is encoded by *Ptpn6* (32), suggesting that SHIP1 may be able to modulate SYK activation through its phosphatase activity.

SYK signaling is known to be activated downstream of various cell surface receptors including CD74, integrins, C-type lectin receptors (dectin-1 and dectin-2), and Fc receptors (27). Identification of the specific triggers of SYK activation in these Pstpip2^{cmo} mice would further clarify the signaling mechanism and provide a deeper understanding of the progression of cmo disease. SYK signaling has also been strongly associated with the recruitment of neutrophils to areas of inflammation (33). The marked reductions in inflammation and lymphomegaly seen in SYKdeficient Pstpip2^{cmo} mice indicate that SYK mediates signaling potentially neutrophil recruitment in Pstpip2^{cmo} mice. Although T-cell dysregulation has been associated with inflammatory bone diseases, previous studies have characterized the osteomyelitis in cmo disease by increased neutrophil numbers without T-cell abnormalities (9,34). As neutrophils have been implicated as major contributors to IL-1B production in cmo (11), our findings suggest SYKmediated recruitment and activation of neutrophils may also play a role in promoting the bony inflammation characterizing *Pstpip2^{cmo}* mice. Previous studies have shown inhibition of signaling pathways highly associated with caspase-8 activation and inflammatory bone disease, such as TNF signaling, fails to protect against cmo disease (9,12). This also indicates that current guidelines for the therapeutic use of TNF inhibitors in the subset of patients with CRMO and concurrent autoimmune diseases may not be effective in treating CRMO. Therapeutic options for the largely pediatric and adolescent CRMO population are limited by nonspecificity and inadequate control of pain and disease progression, which can result in physical disabilities or permanent deformities. As genetic deletion of Syk in the myeloid compartment of *Pstpip2^{cmo}* mice resulted in the complete prevention of disease induction and progression. SYK and its downstream signaling components represent promising, novel therapeutic targets in CRMO.

Experimental procedures

Mice

Pstpip2^{cmo}Nlrp3^{-/-}Aim2^{-/-}, Pstpip2^{cmo}Nlrp3^{-/-} Card9^{-/-}, and Pstpip2^{cmo}Nlrp3^{-/-}Syk^{fl/fl}LysM^{cre} mice were generated by crossing *Pstpip2^{cmo}Nlrp3^{-/-}* mice onto Ripk3^{-/-}, Aim2^{-/-}, Card9^{-/-}, and Syk^{fl/fl}LysM^{cre} backgrounds, respectively. Pstpip2^{cmo}Syk^{fl/fl}LysM^{cre} mice were generated by crossing Pstpip2^{cmo} and $Syk^{\rm fl/fl}LysM^{\rm cre}$ mice. *Pstpip2^{cmo}* mice were purchased from The Jackson Laboratory and are on the BALB/c background. All other mutant mice are on the C57BL/6 background. Littermate controls were utilized to evaluate the influence of genetic deletions on immune responses, IL-1ß regulation, and cmo disease progression. All mice were kept within the Animal Resource Center at St. Jude Children's Research Hospital. Animal studies were conducted according to protocols approved by the St. Jude Animal Care and Use Committee.

Cell culture and stimulation

Primary BMDMs were grown for 5 to 6 days in IMDM (Gibco) supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologicals), 30% L929-conditioned media, 1% non-essential amino acids (Gibco), and 1% penicillin/streptomycin (Sigma). BMDMs were seeded at a concentration of 1×10^6 cells onto 12-well plates. After incubating overnight, cells were stimulated with LPS (100 ng/mL; InvivoGen) for the indicated amount of time (0–8 hours) or treated with LPS + ATP (LPS, 4 h; ATP [5 mM; Roche], 30 min) (38) before cell harvest.

Western blotting

For immunoblotting, BMDMs and footpad protein lysates were prepared by tissue homogenization in RIPA lysis buffer supplemented with a protease inhibitor cocktail (Roche) and PhosSTOP (Roche). A Pierce BCA Protein Assay Kit was used to quantify samples. A total of 40 µg of protein was resolved using SDS-PAGE and transferred onto PVDF membranes (40). The membranes were blocked in 5% skim milk before primary antibodies were added and incubated overnight at 4°C. Afterward, membranes were incubated with horseradish peroxidase (HRP)-tagged secondary antibodies for 1 hour at room temperature. Primary antibodies were anti-GAPDH (Cell Signaling Technologies [CST] #5174), anti-IL-1ß (CST #12507), anti-phospho-ERK1/2 (CST #9101), antitotal ERK1 (CST #9102), anti-phospho-p38 (CST

#9211), anti-total p38 (CST #9212), anti-phospho-IκBa (CST #2859), anti-total IκBa (CST #9242), anti-phospho-SYK (CST #2717), anti-total SYK (CST #2712), anti-phospho-JNK (CST #9251), anti-total JNK (CST #9252), anti-caspase-1 #AG-20B-0044-C100), (Adipogen anti-ASC (Adipogen #AG-25B-0006-C100), anti-NLRP3 (Adipogen #AG-20B-0014-C100), anti-gasdermin D (Abcam #Ab155233), and anti-caspase-8 (Adipogen #AG-20T-0138-C100). Secondary HRP purchased antibodies were from Jackson ImmunoResearch Laboratories.

Microcomputed tomography (micro-CT)

A Siemens Inveon μ CT scanner (Siemens Healthcare) was used to capture micro-CT images. Mouse footpads were imaged with a 672 x 1344 mm matrix and a field of view of 30.04 x 60.08 mm with 1 bed position. Projections were obtained at 80 kVp and 500 μ A (1050 ms exposure; 1000 ms settle time) over half rotation (440 projections), giving an isotropic resolution of 44.7 μ m. Inveon Research Workplace (IRW) software was used to process the data.

Statistical analysis

Each experiment was repeated at least twice before inclusion in the manuscript. The log-rank (Mantel-Cox) test was used to compare statistical significance between survival curves in the two groups. **Acknowledgments:** We thank Ms. Nicole Lantz for help with animal husbandry and Rebecca Tweedell, PhD, for scientific editing and writing support. We also extend thanks to Dr. Jieun Kim in the St. Jude Small Animal Imaging Center for help with acquiring and analyzing the micro-CT data. This work was supported by funding from the National Institutes of Health grants CA163507, AR056296, AI124346, and AI101935 and by ALSAC to T.-D.K.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: T.-D.K. conceptualized the study. T.K.D., R.G., R.K., B.B., B.S., P.G., and A.B. performed the experiments. T.K.D. and R.K. wrote the manuscript. All authors discussed the results, commented on the manuscript, and approved the final version.

References

- 1. Crowson, C. S., Matteson, E. L., Myasoedova, E., Michet, C. J., Ernste, F. C., Warrington, K. J., Davis, J. M., 3rd, Hunder, G. G., Therneau, T. M., and Gabriel, S. E. (2011) The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. *Arthritis Rheum* **63**, 633-639
- 2. Jurik, A. G. (2004) Chronic recurrent multifocal osteomyelitis. *Seminars in Musculoskeletal Radiology* **8**, 243-253
- 3. Hofmann, S. R., Kapplusch, F., Girschick, H. J., Morbach, H., Pablik, J., Ferguson, P. J., and Hedrich, C. M. (2017) Chronic Recurrent Multifocal Osteomyelitis (CRMO): Presentation, Pathogenesis, and Treatment. *Curr Osteoporos Rep* **15**, 542-554
- 4. Roberts-Galbraith, R. H., and Gould, K. L. (2010) Setting the F-BAR: functions and regulation of the F-BAR protein family. *Cell Cycle* **9**, 4091-4097
- 5. Stern, S. M., and Ferguson, P. J. (2013) Autoinflammatory bone diseases. *Rheum Dis Clin North Am* **39**, 735-749
- Chitu, V., Nacu, V., Charles, J. F., Henne, W. M., McMahon, H. T., Nandi, S., Ketchum, H., Harris, R., Nakamura, M. C., and Stanley, E. R. (2012) PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts. *Blood* 120, 3126-3135
- 7. Daheshia, M., and Yao, J. Q. (2008) The interleukin 1beta pathway in the pathogenesis of osteoarthritis. *J Rheumatol* **35**, 2306-2312
- 8. Li, Y., Li, N., Yan, Z., Li, H., Chen, L., Zhang, Z., Fan, G., Xu, K., and Li, Z. (2016) Dysregulation of the NLRP3 inflammasome complex and related cytokines in patients with multiple myeloma. *Hematology* **21**, 144-151
- Lukens, J. R., Gross, J. M., Calabrese, C., Iwakura, Y., Lamkanfi, M., Vogel, P., and Kanneganti, T. D. (2014) Critical role for inflammasome-independent IL-1beta production in osteomyelitis. *Proc Natl Acad Sci U S A* 111, 1066-1071
- 10. Karki, R., and Kanneganti, T. D. (2019) Diverging inflammasome signals in tumorigenesis and potential targeting. *Nat Rev Cancer* **19**, 197-214
- Lukens, J. R., Gurung, P., Vogel, P., Johnson, G. R., Carter, R. A., McGoldrick, D. J., Bandi, S. R., Calabrese, C. R., Vande Walle, L., Lamkanfi, M., and Kanneganti, T. D. (2014) Dietary modulation of the microbiome affects autoinflammatory disease. *Nature* 516, 246-249
- 12. Gurung, P., Burton, A., and Kanneganti, T. D. (2016) NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1beta-mediated osteomyelitis. *Proc Natl Acad Sci U S A* **113**, 4452-4457
- 13. Lin, Y. C., Huang, D. Y., Chu, C. L., and Lin, W. W. (2010) Anti-inflammatory actions of Syk inhibitors in macrophages involve non-specific inhibition of toll-like receptors-mediated JNK signaling pathway. *Mol Immunol* **47**, 1569-1578
- 14. Lin, Y. C., Huang, D. Y., Chu, C. L., Lin, Y. L., and Lin, W. W. (2013) The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. *Sci Signal* **6**, ra71
- 15. Hara, H., Tsuchiya, K., Kawamura, I., Fang, R., Hernandez-Cuellar, E., Shen, Y., Mizuguchi, J., Schweighoffer, E., Tybulewicz, V., and Mitsuyama, M. (2013) Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. *Nat Immunol* 14, 1247-1255
- 16. Gringhuis, S. I., Kaptein, T. M., Wevers, B. A., Theelen, B., van der Vlist, M., Boekhout, T., and Geijtenbeek, T. B. (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. *Nat Immunol* **13**, 246-254
- 17. Gurung, P., and Kanneganti, T. D. (2015) Novel roles for caspase-8 in IL-1beta and inflammasome regulation. *Am J Pathol* **185**, 17-25

- 18. Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., Pop, C., Hakem, R., Salvesen, G. S., and Green, D. R. (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. *Nature* **471**, 363-367
- 19. Kaiser, W. J., Upton, J. W., Long, A. B., Livingston-Rosanoff, D., Daley-Bauer, L. P., Hakem, R., Caspary, T., and Mocarski, E. S. (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. *Nature* **471**, 368-372
- 20. Moriwaki, K., Bertin, J., Gough, P. J., and Chan, F. K. (2015) A RIPK3-caspase 8 complex mediates atypical pro-IL-1beta processing. *J Immunol* **194**, 1938-1944
- Bast, A., Krause, K., Schmidt, I. H., Pudla, M., Brakopp, S., Hopf, V., Breitbach, K., and Steinmetz, I. (2014) Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages. *PLoS Pathog* 10, e1003986
- 22. Pierini, R., Juruj, C., Perret, M., Jones, C. L., Mangeot, P., Weiss, D. S., and Henry, T. (2012) AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. *Cell Death Differ* **19**, 1709-1721
- 23. Mascarenhas, D. P. A., Cerqueira, D. M., Pereira, M. S. F., Castanheira, F. V. S., Fernandes, T. D., Manin, G. Z., Cunha, L. D., and Zamboni, D. S. (2017) Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. *PLoS Pathog* **13**, e1006502
- 24. Mocsai, A., Humphrey, M. B., Van Ziffle, J. A., Hu, Y., Burghardt, A., Spusta, S. C., Majumdar, S., Lanier, L. L., Lowell, C. A., and Nakamura, M. C. (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. *Proc Natl Acad Sci U S A* **101**, 6158-6163
- Malik, A., Sharma, D., Malireddi, R. K. S., Guy, C. S., Chang, T. C., Olsen, S. R., Neale, G., Vogel, P., and Kanneganti, T. D. (2018) SYK-CARD9 Signaling Axis Promotes Gut Fungi-Mediated Inflammasome Activation to Restrict Colitis and Colon Cancer. *Immunity* 49, 515-530 e515
- 26. Wagener, M., Hoving, J. C., Ndlovu, H., and Marakalala, M. J. (2018) Dectin-1-Syk-CARD9 Signaling Pathway in TB Immunity. *Front Immunol* **9**, 225
- 27. Mocsai, A., Ruland, J., and Tybulewicz, V. L. (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. *Nat Rev Immunol* **10**, 387-402
- 28. Tartey, S., Gurung, P., Dasari, T. K., Burton, A., and Kanneganti, T. D. (2018) ASK1/2 signaling promotes inflammation in a mouse model of neutrophilic dermatosis. *J Clin Invest* **128**, 2042-2047
- 29. Gross, O., Poeck, H., Bscheider, M., Dostert, C., Hannesschlager, N., Endres, S., Hartmann, G., Tardivel, A., Schweighoffer, E., Tybulewicz, V., Mocsai, A., Tschopp, J., and Ruland, J. (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. *Nature* **459**, 433-436
- Lin, Y. C., Huang, D. Y., Wang, J. S., Lin, Y. L., Hsieh, S. L., Huang, K. C., and Lin, W. W. (2015) Syk is involved in NLRP3 inflammasome-mediated caspase-1 activation through adaptor ASC phosphorylation and enhanced oligomerization. *J Leukoc Biol* 97, 825-835
- 31. Gurung, P., Fan, G., Lukens, J. R., Vogel, P., Tonks, N. K., and Kanneganti, T. D. (2017) Tyrosine Kinase SYK Licenses MyD88 Adaptor Protein to Instigate IL-1alpha-Mediated Inflammatory Disease. *Immunity* **46**, 635-648
- 32. Drobek, A., Kralova, J., Skopcova, T., Kucova, M., Novak, P., Angelisova, P., Otahal, P., Alberich-Jorda, M., and Brdicka, T. (2015) PSTPIP2, a Protein Associated with Autoinflammatory Disease, Interacts with Inhibitory Enzymes SHIP1 and Csk. *J Immunol* **195**, 3416-3426
- 33. Van Ziffle, J. A., and Lowell, C. A. (2009) Neutrophil-specific deletion of Syk kinase results in reduced host defense to bacterial infection. *Blood* **114**, 4871-4882
- Grosse, J., Chitu, V., Marquardt, A., Hanke, P., Schmittwolf, C., Zeitlmann, L., Schropp, P., Barth, B., Yu, P., Paffenholz, R., Stumm, G., Nehls, M., and Stanley, E. R. (2006) Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease. *Blood* 107, 3350-3358
- Chitu, V., Ferguson, P. J., de Bruijn, R., Schlueter, A. J., Ochoa, L. A., Waldschmidt, T. J., Yeung, Y. G., and Stanley, E. R. (2009) Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. *Blood* 114, 2497-2505

- Karki, R., Man, S. M., Malireddi, R. K. S., Gurung, P., Vogel, P., Lamkanfi, M., and Kanneganti, T. D. (2015) Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. *Cell Host Microbe* 17, 357-368
- 37. Newton, K., Sun, X., and Dixit, V. M. (2004) Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. *Mol Cell Biol* **24**, 1464-1469
- Karki, R., Lee, E., Place, D., Samir, P., Mavuluri, J., Sharma, B. R., Balakrishnan, A., Malireddi, R. K. S., Geiger, R., Zhu, Q., Neale, G., and Kanneganti, T. D. (2018) IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation. *Cell* **173**, 920-933 e913
- Gross, O., Gewies, A., Finger, K., Schafer, M., Sparwasser, T., Peschel, C., Forster, I., and Ruland, J. (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. *Nature* 442, 651-656
- 40. Sharma, B. R., Karki, R., Lee, E., Zhu, Q., Gurung, P., and Kanneganti, T. D. (2019) Innate immune adaptor MyD88 deficiency prevents skin inflammation in SHARPIN-deficient mice. *Cell Death Differ* **26**, 741-750

Figures

Fig. 1. RIPK3 and AIM2 are dispensable for disease progression in *Pstpip2^{cmo}* mice. (A) Incidence of disease in wild type (WT; n = 5), *Pstpip2^{cmo}Nlrp3^{-/-}* (n = 9), and *Pstpip2^{cmo}Nlrp3^{-/-}Ripk3^{-/-}* (n = 5) mice over the experimental course and representative footpad images, footpad CT scans, and popliteal lymph nodes from these respective mice. (B) Incidence of disease in WT (n = 8), *Pstpip2^{cmo}Nlrp3^{-/-}* (n = 10), and *Pstpip2^{cmo}Nlrp3^{-/-}* (n = 10) mice over the experimental course and representative footpad CT scans, and popliteal lymph nodes from these respective mice.

Fig. 2. CARD9, but not SYK, is dispensable for disease progression in *Pstpip2*^{cmo} mice. (A) Incidence of disease in wild type (WT; n = 5), *Pstpip2*^{cmo}Nlrp3^{-/-} (n = 10), and *Pstpip2*^{cmo}Nlrp3^{-/-}Card9^{-/-} (n = 20) mice over the experimental course and representative footpad images, footpad CT scans, and popliteal lymph nodes from these respective mice. (B) Incidence of disease in WT (n = 5),

 $Pstpip2^{cmo}Nlrp3^{-/-}$ (n = 8), and $Pstpip2^{cmo}Nlrp3^{-/-}Syk^{fl/fl}LysM^{cre}$ (n = 20) mice over the experimental course and representative footpad images, footpad CT scans, and popliteal lymph nodes from these respective mice. (C) Incidence of disease in WT (n = 5), $Pstpip2^{cmo}$ (n = 7), and $Pstpip2^{cmo}Syk^{fl/fl}LysM^{cre}$ (n = 13) mice over the experimental course and representative footpad images, footpad CT scans, and popliteal lymph nodes from these respective mice.

Fig. 3. SYK is involved in regulating levels of pro-IL-1 β and NF- κ B in *Pstpip2^{cmo}* mice. (A) Immunoblot analysis of pro–IL-1β, caspase-8 (Casp-8), caspase-1 (Casp-1), phospho-SYK (p-SYK), total SYK (t-SYK), and GAPDH in wild type (WT), *Pstpip2^{cmo}*, and *Pstpip2^{cmo}Syk*^{fl/fl}*LysM*^{cre} footpad lysates. (B) Immunoblot analysis of pro-IL-1β, Casp-8, Casp-1, p-SYK, t-SYK, and GAPDH in WT, $Pstpip2^{cmo}$, and $Pstpip2^{cmo}Syk^{fl/fl}LysM^{cre}$ bone marrow-derived macrophages (BMDMs) at several timepoints after lipopolysaccharide (LPS) treatment. (C) Immunoblot analysis of phospho-IkBa (p-IkBa), total IκBα (t-IkBa), phospho-ERK (pERK), total ERK (t-ERK), phospho-JNK (p-JNK), total JNK (t-JNK), phospho-p38 (p-p38), total p38 (t-p38), and GAPDH in WT, Pstpip2^{cmo}, and Pstpip2^{cmo}Syk^{fl/fl}LysM^{cre} footpad lysates. (D) Immunoblot analysis of activated (cleaved) Casp-1, Casp-8, and gasdermin D (GSDMD) in WT, Pstpip2^{cmo}, and Pstpip2^{cmo}Syk^{fl/fl}LysM^{cre} BMDMs treated with LPS + ATP or left untreated with media. (E) Immunoblot analysis of inflammasome components pro–IL-1β, NLRP3, ASC, and GAPDH in WT, *Pstpip2^{cmo}*, and $Pstpip2^{cmo}Syk^{fl/fl}LysM^{ere}$ BMDMs treated with LPS + ATP or left untreated with media. Representative blots from three independent experiments are shown.

The nonreceptor tyrosine kinase SYK induces autoinflammatory osteomyelitis in a mouse model of chronic recurrent multifocal osteomyelitis

Tejasvi K Dasari, Rechel Geiger, Rajendra Karki, Balaji Banoth, Bhesh Raj Sharma, Prajwal Gurung, Amanda Burton and Thirumala-Devi Kanneganti

J. Biol. Chem. published online November 12, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.010623

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Graphical Abstract