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Bone marrow lympho-myeloid malfunction in
obesity requires precursor cell-autonomous TLR4
Ailing Liu1, Minhui Chen1, Rashmi Kumar2, Maja Stefanovic-Racic3, Robert M. O’Doherty3, Ying Ding4,

Willi Jahnen-Dechent 5 & Lisa Borghesi1

Obesity, a prevalent condition in adults and children, impairs bone marrow (BM) function.

However, the underlying mechanisms are unclear. Here, we show that obese mice exhibit

poor emergency immune responses in a toll-like receptor 4 (TLR4)-dependent manner.

Canonical myeloid genes (Csf1r, Spi1, Runx1) are enhanced, and lymphoid genes (Flt3, Tcf3,

Ebf1) are reduced. Using adoptive transfer and mixed BM chimera approaches we demon-

strate that myeloid>lymphoid bias arises after 6 weeks of high-fat diet and depends on

precursor cell-autonomous TLR4. Further, lean mice exposed to the TLR4 ligand lipopoly-

saccharide (LPS) at doses similar to that detectable in obese serum recapitulates BM lympho-

myeloid alterations. Together, these results establish a mechanistic contribution of BM cell-

intrinsic TLR4 to obesity-driven BM malfunction and demonstrate the importance of LPS. Our

findings raises important questions about the impact of maternal obesity and endotoxemia to

fetal hematopoiesis, as fetal immune precursors are also sensitive to TLR4 signals.
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Obesity, a condition of global impact, is associated with
negative health outcomes including adverse events after
bone marrow (BM) allogeneic transfer, increased risk of

community-acquired and nosocomial infections, and influenza-
associated mortality1–5. The prevalence of obesity not only in
adults but also children, for whom obesity may be a life-long
condition, prompts the need for a mechanistic understanding of
BM malfunction6. In animal models, mice fed high-fat diet
(HFD) have impaired emergency hematopoiesis following bac-
terial challenge, poor pathogen clearance, and increased mortal-
ity7,8. Several hematopoietic alterations are apparent even in
homeostasis circumstances in obesity. For example, obese mice
exhibit heightened BM myelopoiesis and abnormal frequencies of
hematopoietic stem and progenitor cell (HSPC) subsets as well as
gross thymic alterations5,9–13. Insight into the specific progenitor
subsets impacted by obesity and the mechanistic underpinnings is
highly desirable.
Two lines of evidence link obesity-associated immune cell

dysregulation with the major innate immune sensor Toll-like
receptor 4 (TLR4). First, obese animals deficient in TLR4 owing
to germline ablation or to hematopoietic-specific deletion are
substantially protected from inflammation, insulin resistance and
type 2 diabetes14,15. Indeed, obesity-dependent TLR4 signals were
shown to directly activate macrophage production of pro-
inflammatory cytokines that contribute to inflammation and
insulin resistance11,15,16. Reciprocally, TLR4 ablation shifts adi-
pose tissue macrophages to an alternatively activated state asso-
ciated with reduced inflammation16. Second, increased BM
myeloid output in obese mice with frank diabetes requires
TLR411. TLR4-activated CD11c+ visceral adipose tissue macro-
phages release interleukin-1b (IL-1b) that, in turn, amplifies BM
lineage−c-kit+Sca-1− (LKSneg) myelopoiesis, essentially produ-
cing a feed-forward mechanism that reinforces inflammation11.
BM changes are also apparent in the pre-diabetic stages of obesity
but the responsible mechanisms have not been fully exam-
ined11,12,17. This is an important point as distinct mechanisms
may contribute to BM alterations at different temporal stages of
obesity-associated disease processes5. Intriguingly, recent studies
demonstrate that BM cells express TLR4 and directly respond to
TLR4 ligand in vivo18−20. Indeed, BM migratory HSPCs that
circulate through blood and lymph are thought to patrol per-
ipheral tissues before returning to BM. Following encounter with
TLR ligand, these migratory HSPCs quickly boost the local supply
of myeloid cells21.The implications of this BM TLR4 sensing
pathway to obesity-associated BM malfunction have not been
directly examined.
Also, unclear are the TLR4 ligands most relevant to BM mal-

function in obesity. Lipopolysaccharide (LPS) and dietary satu-
rated fatty acids are two TLR4 ligands recognized as potentially
important in obesity-associated changes in metabolism and
immune function22–24. For example, consumption of a high-fat
meal but not a healthy control meal is sufficient to transiently
increase plasma LPS in healthy human subjects and may underlie
the chronically elevated concentrations of plasma LPS that
characterize obesity23. Elevated serum LPS has also been attrib-
uted to chylomicron-mediated transport, increased gut perme-
ability, and/or changes in gut microbial composition, which could
further exacerbate obesity outcomes22–24. Notably, as little as 2 ng
of LPS administered, i.p. rapidly depletes BM monocytes, sug-
gesting exquisite sensitivity of the BM compartment to this potent
TLR4 ligand25. Further, brief exposure to LPS activates BM
precursor proliferation and myeloid-biased differentiation,
whereas chronic LPS exposure drives persistent HSPC activation
and a stem cell myeloid bias18,20. Saturated fatty acids common to
high-fat diets, such as palmitate, have also been shown to directly
activate TLR4 in macrophages15. Palmitic acid was furthermore

recently shown to enhance BM myeloid colony formation and
likely to bias immune cell development13. However, the in vivo
importance of this pathway of TLR4 activation is controversial as
saturated fatty acids are generally considered to be weak TLR4
ligands relative to LPS11,15,26.

Here, we use adoptive transfer and mixed BM chimera
approaches to examine the impact of TLR4 to obesity-associated
BM alterations, and begin to prioritize the importance of biolo-
gically relevant TLR4 ligands. In obese mice, modest changes in
steady-state BM cellular composition give rise to impaired
emergency hematopoiesis in a TLR4-dependent manner. In
mixed BM chimeras, the TLR4-sufficient donor partner exhibits
obesity-driven BM lympho-myeloid alterations, whereas the
TLR4-deficient donor partner is protected, demonstrating a
mechanistic contribution of BM cell-autonomous TLR4 activity.
We further show that the BM myeloid>lymphoid bias that arises
early in obesity depends on BM cell subset-autonomous TLR4.
Moreover, chronic exposure to low-dose LPS recapitulates this
key feature of obesity-associated BM damage. We conclude that
cell-intrinsic TLR4 is required for BM malfunction in obesity.

Results
Modest BM perturbations in homeostasis amplified by stress.
We first quantified BM progenitors in mice with diet-induced
obesity and then examined the functional potential of defined
precursor subsets. Mice were fed a 40 kcal% HFD or the
nutrient-matched low fat control diet (NCD) starting at weaning,
thereby ensuring uniformity of protein source, lard type and
micronutrients. Following 16–18 weeks of exposure to HFD,
obese mice had a 25% increase in body weight and 2–3 fold
increase in fat stores, similar to previous findings (Supplemen-
tary Figure 1A)27,28.

Absolute numbers of BM multipotent LSKs (lineage−Sca-1+c-
kit+) as well as self-renewing hematopoietic stem cells (HSCs;
CD150+CD48− LSK) were reduced in BM of obese mice (Fig. 1a,
phenotypic gating depicted in Supplementary Figure 1B). The
frequency of BM-LSK and HSC progenitors marked by BrdU
during a 48 h labeling window was increased 40–60% in obese
animals (Fig. 1b). BrdU labeling performed in this way reflects
total cell turnover within the labeling period inclusive of
proliferation, survival and mobilization. Neither the frequency
of cycling (S+G2M) progenitors as assessed by BrdU/DAPI nor
the number of apoptotic cells as determined by staining with
annexin V were detectably altered in obesity (Supplementary
Figure 1C). However, both LSK and HSC subsets were
numerically increased in the spleen of obese animals (Fig. 1a).
In downstream BM subsets, no gross numerical alterations were
detectable in myeloid precursors (common myeloid progenitor;
granulocyte–monocyte progenitor; megakaryocyte–erythroid pro-
genitor), lymphoid primed multipotent progenitors (LMPP),
common lymphoid progenitors (CLPs), or precursors to the
Group 2 innate lymphoid cells thought to limit adiposity
(Supplementary Figure 1D). Previous studies report differences
between lean and obese mice in the relative frequency of some of
these subsets within flow cytometry gates and, under our
experimental conditions, modest changes in percentages fell
within standard error when calculated back to absolute
numbers5,11,12.

Following hematopoietic ablation such as by chemotherapy,
BM output increases several fold above baseline in order to meet a
heightened demand for blood cell production29. We exposed mice
to the chemotherapeutic 5-fluorouracil (5-FU), thereby forcing
hematopoietic repopulation. Obese mice fed a moderate 40 kcal%
(diamond symbols) or 60 kcal% (square symbols) HFD exhibit a
~50% reduction in blood leukocyte rebound compared to lean
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controls (Fig. 1c). Further, BrdU incorporation in obese HSC and
MPP but not CMP and GMP was significantly increased
following 5-FU (Fig. 1e). Emergency hematopoiesis in response
to other acute stressors was also perturbed. Obese mice exhibited
poor peripheral blood neutrophilia following exposure to an acute
dose of the TLR4 ligand LPS (Supplementary Figure 2A), similar
to previous reports of poor BM neutrophil efflux following
challenge with live bacteria7.
The attenuated repopulation capacity of obese BM did not

reflect permanent damage to precursor potential. Using a

competitive transfer approach in which BM from obese mice or
lean mice was separately mixed with competitor BM (lean) and
transferred to lean recipients, we found that 5-FU responsiveness
could be restored. Sixteen weeks post engraftment, a time point
when hematopoiesis is exclusively derived from donor bone
marrow, we subjected the BM recipients to 5-FU challenge.
Donor BM derived from obese mice performed as well as donor
BM derived from lean mice through not just one round but two
sequential rounds of 5-FU ablation administered 4 weeks apart
(Fig. 1d). Moreover, LSKs derived from obese versus lean donors
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Fig. 1 Obesity compromises hematopoietic potential. a Number and percentage of multipotent BM-LSK (lineage−Sca-1+c-kit+) and HSC (CD150+CD48−

LSK) in mice fed 40 kcal% high-fat diet (HFD) or nutrient-matched low fat control diet (NCD) for 16–18 weeks. In spleen, HSCs were identified using the
CD150+flk2− LSK definition as rare CD150+CD48− LSKs were below the limit of detection by flow cytometry. Data represent the mean ± SEM of animals
pooled from at least three independent experiments of NCD/HFD cohorts assayed in parallel for a total of n= 7 mice/group. b For analysis of BrdU
incorporation, mice were injected twice daily with BrdU 48 h prior to killing. Following surface staining, cells were subsequently permeabilized for
intracellular BrdU staining. Data are pooled from three independent experiments in which NCD/HFD mice were examined side-by-side with the total
number of mice inset in the graph. c Mice fed the indicated high-fat diet for 16 weeks were exposed to the chemotherapy drug 5-fluorouracil (5-FU) and
peripheral blood leukocyte rebound examined. Each diet (40 kcal%, diamond; and 60 kcal%, square) was examined separately and the data pooled from a
total of two independent experiments of 3–4 mice/group). d BM from B6 mice (CD45.2) fed either 40 kcal% high-fat diet or control diet for 16–18 weeks
was separately mixed with competitor BM (CD45.1) and co-transferred to CD45.1/2 recipients. Following 16 weeks engraftment, a point at which
hematopoiesis derives exclusively from donor HSCs, competitively engrafted chimeras were subject to two sequential rounds of 5-FU (day 0, 28) and
peripheral blood leukocyte rebound of the CD45.2 donor partner examined. Data are pooled from two independent experiments (total n= 3–4 recipients/
group). e Following 5-FU challenge as in c, BM subset BrdU incorporation was examined at the indicated time points. Data are pooled from 2–3
independent experiments of NCD/HFD mice assayed in parallel, and each symbol is an individual animal. Data are analyzed by Student’s t-test. Error bars
represent s.e.m. **p < 0.05; ns, not significant
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had comparable levels of BrdU labeling within lean recipients,
indicating restoration of normal patterns of LSK turnover (NCD:
60.5% ± 1.3, HFD: 58.9% ± 1.8, mean ± SEM, n= 3/group). Thus,
we conclude that relatively moderate changes in steady-state
hematopoiesis give rise to grossly impaired responses under
challenge, and at least some of these defects can be reversed by
removal of progenitors from the obese environment.

HSPC functional and transcriptional defects in obesity.
Hematopoietic rebound following insult or injury reflects the
combined output of multiple progenitor subsets, therefore we
examined the functional potential of discrete BM subsets in
obesity: multipotent (HSC, MPP), myeloid (LKSneg), and B
lymphoid (CLP, LSK). For these studies, we exploited serum-free,
stroma-free in vitro cultures with the appropriate lineage-specific
cytokines to evaluate the cytokine-induced differentiation cap-
abilities of progenitors derived from obese mice under highly
defined conditions.
The lineage potential of both myeloid and lymphoid precursors

isolated directly ex vivo from mice fed HFD for 20 weeks was
changed as evidenced by a twofold increase in myeloid outgrowth
(Gr-1+ or CD11b+) (Fig. 2a), consistent with previous reports of
myeloid-biased BM7,9,11–13. Furthermore, sort purified CLP and
LSK subsets from obese mice had a ~50% decrease in B lineage
outgrowth (B220+CD19+) relative to lean controls (Fig. 2a). The
enhanced outgrowth potential of LKSneg progenitors did not
extend to upstream self-renewing HSC or non-renewing MPP as
assessed in Methocult cultures, which support granulocyte
−macrophage colony formation (Fig. 2b). By contrast, whole
bone marrow (WBM) from HFD mice had increased numbers of

colonies relative to NCD animals, confirming past reports12,13

(Fig. 2b & Supplementary Figure 1E). No differences in colony
size were detected (Supplementary Figure 1E). We then examined
the RNA expression profiles of LKSneg and CLP subsets isolated
directly ex vivo using a NanoString panel containing probes to
genes associated with lympho-myeloid differentiation, signal
transduction and cell cycle activity (Fig. 2c). Select findings were
validated and extended by RT-QPCR (Supplementary Figure 2B).
LKSneg progenitors from obese mice had increased expression of
transcriptional regulators of myeloid differentiation (Csf1r, Spi1,
Runx1), cell cycle activators (Cdk1, Ccna2) and signal transducers
mechanistically linked to myeloid activity (Stat3, Stat6). CLPs had
reduced expression of a hallmark cytokine receptor (Flt3),
developmental stage-specific lymphoid transcription factors
(Tcf3, Ebf1, Ikzf1), and several regulators of cell cycling (Cdkn2b,
Cdk1,Max) (Fig. 2c & Supplementary Figure 2B). Downstream in
the peripheral blood, a subset of obese mice exhibited
spontaneously increased frequencies of Gr-1+ and CD11b+ cells
at steady-state, a finding identical across animals fed the 40 kcal%
or 60 kcal% high-fat diets. In contrast, B-cell frequencies were not
detectably altered (Supplementary Figure 2C). Together, these
findings show that HSPCs isolated from obese mice retain normal
self-renewal activity in vivo and colony-forming activity in vitro
(Figs 1d and 2b, respectively), whereas the myeloid potential of
LKSneg cells as well as the B-lymphoid potential of both LSK and
CLP subsets are compromised at the transcriptional and
functional levels.

In vivo requirement for BM-intrinsic TLR4 in BM malfunc-
tion. To establish the in vivo role of TLR4 in impaired emergency
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Fig. 2 BM LKSneg and CLP functional defects emerge early in obesity. a B6 mice were fed the indicated high-fat or nutrient-matched control diet for 6 or
20 weeks, after which defined BM precursor subsets were sorted for analysis of differentiation potential under stroma-free, serum-free conditions. lineage
−c-kit+Sca-1− (LKSneg), common lymphoid progenitor (CLP) and LSK subsets were assays in liquid cultures under myeloid- or lymphoid-supportive
conditions for 8 or 12 days, respectively, after which cells were stained with antibodies to CD19, B220, Gr-1, or CD11b. Yield/cells input is shown. Bar graphs
depict average ± SEM of data from two independent experiments of NCD/HFD mice assayed in parallel, with the total number of mice inset. b Sorted HSC
(CD150+flk2− LSK), MPP (flk2+ LSK), each at 100 cells per well, or 2 × 104 BM cells (WBM) from NCD or HFD mice were cultured in Methocult and
colonies enumerated on day 10. For scatter plots, data are pooled from three independent experiments of paired NCD/HFD mice. Each symbol is an
individual animal. Bar graphs depict average ± SEM (duplicate experiments, total n= 4/group). a–b Data are analyzed by Student’s t-test with Bonferroni
correction for multiple comparisons. Error bars represent s.e.m. **p < 0.05; ns, not significant. c NanoString expression analysis of canonical genes
associated with lymphoid or myeloid potential in BM LKSneg and CLP progenitors sorted from mice fed high-fat or control diet for 20 weeks. Each lane is a
different mouse; one lane was lost due to an instrument technical problem
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immune responses in obesity, we compared 5-FU recovery pat-
terns in WT and TLR4-deficient mice. In these experiments,
TLR4-sufficient and TLR4-deficient age-matched, weight-
matched mice were fed high-fat or control diet for 16 weeks.
The weights were: lean B6 (31.6 ± 2.2), lean Tlr4−/− (35.2 ± 1.6),
obese B6 (46.4 ± 2.3), obese Tlr4−/− (48.6 ± 1.4) (average grams ±
SD; n= 6–8 mice/group). Despite weight gain, Tlr4−/− mice fed
HFD had no detectable changes in BM HSPC numbers or per-
ipheral blood lympho-myeloid composition (Supplementary
Figure 3A). Mice were then challenged with a single dose of 150
mg/kg 5-FU. In contrast to the poor hematopoietic rebound of
WT mice fed HFD, the TLR4-deficient obese counterparts fed
HFD for 16 weeks retained normal hematopoietic repopulation
kinetics following 5-FU ablation (compare Figs 3a and 1c). Fur-
ther, the obese TLR4-deficient mice were fully protected from
both BM LKSneg enhancement and CLP inhibition (Fig. 3b).
These findings suggest a broader importance of TLR4 to BM
malfunction in obesity than is currently appreciated.
TLR4 is expressed on BM precursors, on the stromal cells and

mesenchymal stem cells (MSC) that form BM niches, and on
mature immune cells in the periphery. To empirically determine
whether the requirement for TLR4 signals is cell-intrinsic or cell-
extrinsic we generated mixed BM chimeras. Equal numbers of
BM from WT and Tlr4−/− mice were mixed and co-engrafted to
WT recipients. In this strategy, since both the WT and Tlr4−/−

cells are allowed to develop in the same cellular microenviron-
ment, any change in the responses of the Tlr4−/− donor
counterpart indicates a cell-intrinsic effect. One week after
engraftment, recipient mice were fed control or HFD for

16–20 weeks. While WT mice exhibited myeloid bias, we found
that TLR4-deficient donor counterparts within the same
recipients were protected (Fig. 3c). We conclude that BM-
intrinsic TLR4 is required for lympho-myeloid malfunction in
obesity. We also examined lympho-myeloid ratios in the
periphery. As myeloid bias had not yet fully translated to blood
to the point of reaching statistical significance, we could not make
a definitive conclusion other than to note the trend toward
myeloid production in WT but not Tlr4−/− (Fig. 3c). A previous
study demonstrated a key role for obesity-associated IL-1 in
enhancing BM monocytosis in TLR4-sufficient CMP and GMP11.
Our observation that Tlr4−/−-derived donor cells are protected
from lympho-myeloid malfunction despite being in a WT
cytokine microenvironment suggests that TLR4 signals are acting
upstream of IL-1 signals.

Chronic low-dose LPS recapitulates lympho-myeloid mal-
function. BM tissue is highly responsive to TLR4 ligand admi-
nistered at low doses in vivo25. One characteristic feature of
obesity in mouse and man is increased levels of serum LPS (i.e.,
low-grade endotoxemia), and we confirm this finding (Fig. 4a)22–
24. We examined the potential of LPS, administered at doses
physiologically relevant to obesity, to drive LKSneg enhancement
and CLP inhibition in lean mice. Following 6 weeks of LPS
exposure at a dose of 6 μg i.p. every other day, serum LPS in lean
mice was increased 2–4-fold, similar to the magnitude of increase
over baseline observed in obesity (compare Fig. 4a, b). Animal
weights were not detectably altered by this low level of LPS (PBS:
26.9 ± 0.9, LPS: 26.1 ± 0.6; average grams ± SEM; n= 9 mice/
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group), similar to past reports18,19. Similarly, Tlr4−/− BM HSPC
or peripheral blood subsets were not detectably altered by LPS
exposure (Supplementary Figure 3B). Although LPS concentra-
tions within BM niches per se are difficult to formally quantify,
LPS administered i.p. readily reaches BM18. Mice exposed to
chronic LPS for 6 weeks had a 150% increase in LKSneg myeloid
outgrowth and an 80% decrease in CLP lymphoid outgrowth,
similar to the alterations observed in obese animals (Fig. 4c).
Further, both alterations were TLR4-dependent as expected. In
addition to LPS, saturated fatty acids abundant in high-fat diets
serve as TLR4 ligands. The identification of fetuin-A as a physical
adapter between TLR4 and dietary saturated fats provides the
opportunity to investigate the mechanistic role pathway in
obesity-driven BM malfunction30,31. Fetuin-A+/− mice are on the
C57BL/6N background and we compared WT and Fetuin-A−/−

littermates following 6 weeks of exposure to HFD or NCD. While
CLPs from obese WT mice had poor B lineage output, LKSneg

potential from these same animals was not increased, suggesting
strain specificity in the impact of HFD on BM (Supplementary
Figure 2D). CLPs from Fetuin-A−/− mice were protected from
HFD. We interpret these results with caution as WT mice gained
more weight than Fetuin-A−/− mice, and further experiments are
needed to determine a causal role of Fetuin-A (Supplementary
Figure 2E, 41% versus 14% weight increase, respectively).

Together, these findings suggest a much broader role for TLR4 in
obesity-associated loss of BM integrity than is currently appre-
ciated, with TLR4 regulating not only myeloid potential but also
B lymphoid potential and hematopoietic rebound.

Early LKSneg and CLP defects require cell-autonomous TLR4.
Several studies report BM myeloid bias after only 5–7 weeks of
HFD, a stage of obesity that precedes gross diabetes, but the
underlying mechanisms have not been examined7,9. We now
show that both LKSneg enhancement and CLP inhibition is
detectable following only 6 weeks of HFD (Fig. 2a). At this
relatively early stage of obesity, however, there was no detectable
increase in protein concentrations of inflammatory cytokines in
the extracellular fluid of BM including IL-1b, interleukin 6 (IL-6)
or tumor necrosis factor (TNF) (Fig. 5a). These observations do
not exclude the possibility that inflammatory cytokines are
increased within local BM niches, at earlier time points not
investigated or in other tissues where mobilized HSPCs might
interact with inflammatory cytokines. Consistent with our find-
ings, levels of Sca-1, an inflammation sensitive cell surface anti-
gen, also were similar in BM of obese and lean mice after 6 weeks
of HFD (Fig. 5a). The absence of readily apparent BM inflam-
mation raised the possibility that inflammation-independent
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mechanisms are responsible for BM malfunction during early
stages of obesity, which contrasts with the role of inflammation in
perpetuating disease in established obesity11. To test the possi-
bility that BM precursor TLR4 regulates BM development in early
stages of obesity, we generated chimeras in which WT BM
(CD45.1) was mixed with TLR4-deficient BM (CD45.2) and co-
engrafted into WT hosts (CD45.1/2). One week after engraft-
ment, chimeric animals were exposed to HFD or NCD for
6 weeks. Strikingly, LKSneg and CLP subsets from the TLR4-
deficient donor partner were protected from the BM mye-
loid>lymphoid bias in obesity while their WT progenitor coun-
terparts remained susceptible (Fig. 5b). We note that the Tlr4−/−

CLP → B-cell yield differs slightly from WT in both the NCD and
HFD groups, an outcome similar to that observed in another
model of TLR4 stress19. These findings place emphasis on a direct
cell-autonomous role for TLR4 in early stage BM malfunction as
both WT and Tlr4−/− progenitors were within the same HFD
chimeric recipient. Thus, distinct mechanisms appear to initiate
versus perpetuate BM damage in obesity. In contrast to late stage
obesity in which BM myeloid bias is driven indirectly by TLR4 on
peripheral inflammatory macrophages11, cell-autonomous TLR4
is required for early stage BM lympho-myeloid malfunction.

Discussion
Our findings demonstrate a broader role for TLR4 in obesity-
associated BM dysfunction than is presently recognized, and
reveal a direct requirement for TLR4 on BM precursors. Speci-
fically, cell-intrinsic TLR4 is required for LKSneg and CLP mal-
function during stages of obesity when gross BM inflammation is
not readily detectable. We show that the TLR4 ligand LPS is
elevated in the plasma of obese animals, and administration of
exogenous LPS in lean mice recapitulates BM LKSneg and CLP
functional alterations. These findings reveal a new cell-intrinsic
pathway by which TLR4 regulates BM LKSneg and CLPs, in
addition to the known role of TLR4 acting indirectly via
inflammatory cytokines. Thus, TLR4 acts to regulate normal BM
development via distinct cellular mechanisms during different
temporal stages of obesity and our findings define the importance
of one biologically relevant TLR4 ligand, LPS.
Long-term (LT)- HSCs sustain life-long hematopoiesis in

adults. Here we show that although the normalized proportion of

BM HSC/HSPC is increased in obesity, similar to past
reports11,12, absolute numbers of BM HSCs are decreased. The
realization that HSC/HSPC are being consumed by obesity
changes our thinking about the impact of HFD and obesity on
HSC/HSPC integrity, and allows us to connect those original
studies with new directions emerging in the literature. Why are
BM HSCs being lost? We found no detectable evidence of HSC
apoptosis or change in cell cycle status. However, our observa-
tions of increased HSC BrdU labeling, an indicator of cell turn-
over, combined with findings of increased numbers of HSCs in
spleen suggest that obesity may mobilize HSCs to the periphery.
Indeed, a recent study demonstrated that HSPCs accumulate in
adipose tissue LSK (AT- LSK) during HFD32. Further, AT-LSK
are shown to be one source of the adipose tissue macrophages
(ATM) that perpetuate inflammation and metabolic disease in
obesity. These findings raise major questions about the origi-
nating tissue source of AT-LSK. Are BM-LSK being mobilized to
adipose tissue? Splenic LSK may be another source of AT-LSK.
Knowledge of the originating tissue source of AT-LSK is critical
for developing effective intervention strategies. One way to
experimentally address this question is through genetic barcoding
approaches that permit fate tracking of single HSC clones33,34.
Following adoptive transfer of marked HSCs and acquisition of
steady-state hematopoiesis, hosts can be shifted to HFD and the
bar-codes of AT-LSK, BM-LSK and SPL-LSK compared. It will be
important to rigorously exclude potential contamination of LSK
by myeloid progenitors (normally Sca-1−), as Sca-1 expression is
induced by inflammatory cytokines18,35. This can be accom-
plished using the alternative markers CD150 and CD48 instead of
Sca-135. Another approach to identifying migratory HSCs is
through parabiosis experiments in which the circulatory systems
of CD45.1 and CD45.2 mice are surgically joined. Dutta et al.36

used this strategy to identify migratory chemokine receptor-2
(CCR2+) HSC that generated myeloid cells in a model of
ischemic injury. The authors then employed nanoparticle-based
siRNA knockdown to reduce CCR2 levels, dampen HSC mobi-
lization and diminish splenic seeding. In obesity, CCR2 has been
identified as one mediator of monocyte migration into adipose
tissue but the importance of CCR2 during HSC recruitment has
yet to be examined37. Intriguingly, Singer et al.12 demonstrated
that HFD HSCs have enhanced potential to generate ATMs even
following serial passage through NCD hosts before final transfer
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to HFD recipients. The mechanisms underlying the sustained
capability of BM HSC to produce ATMs are unclear. One hint
may come from studies of HSC dynamics in chronological aging
in which myeloid-biased CD150hi HSCs become overrepresented
with age relative to CD150int/lo HSCs38. Changes in BM HSC
composition in obesity may lead to the preferential enrichment of
particular migratory HSC subsets capable of infiltrating adipose
stores and generating ATMs.
Nagareddy et al.11 were first to identify that ATM-derived IL-1

promotes monocytosis through effects on BM CMPs and GMPs
in obesity. A recent study opens up the possibility that this
paradigm may be extended to IL-1 effects on BM HSCs as well.
Not only can BM HSCs directly respond to IL-1 but chronic IL-1
exposure was shown to direct myeloid-biased HSC differentiation
in vivo39. These observations take on additional importance as
obesity affects not just adults but also children and BM alterations
may impact life-long immune function. In one model of sustained
obesity in which mice were given HFD starting at 6–7 weeks of
age and then maintained on HFD for another 25 weeks, BM
cellularity was observed to initially contract and then to steadily
increase28. We did not detect a pattern of BM contraction/
expansion and the different experimental designs of our studies,
including nutritional composition of HFD and age at which
animals are first exposed to HFD, make the findings harder to
directly compare. What is clear is that obesity is a prevalent
condition, and multiple independent studies have shown dra-
matic alterations in the earliest BM precursors that replenish the
immune system.
Here we show a BM cell-intrinsic role for TLR4 in LKSneg and

CLP malfunction following HFD. However, our studies do not
preclude a role for obesity effects on stromal cell niches. Indeed,
HFD has been shown to alter HSPC niches as well as bone
architecture to the benefit of myelopoiesis10,40. HSPCs are found
adjacent to BM sinusoids and in close proximity to mesenchymal
stem cells (MSC). Short-term (6 week) exposure to HFD
decreased the number of CXCL12-abundant reticular (CAR) cells
and slightly increased the frequency of nestin+ BM MSCs40. This
finding is important as different niches have different functional
roles. For example, conditional ablation of CXCL12 impairs CLPs
and B lymphopoiesis without apparent effects on HSCs41. Thus,
obesity-associated loss of CAR niches, or alteration in CAR niche
function, may reinforce myeloid>lymphoid biased hematopoiesis.
Interestingly, TLR4 sensing by CAR cells is thought to regulate
homeostasis by regulating the frequency of circulating monocytes.
Following a pulse of low-dose LPS, CAR cells produce macro-
phage chemotactic protein that drives monocyte emigration from
bone marrow in a matter of minutes25. By contrast, higher LPS
doses combined with other inflammatory signals drive distinct
MSC responses. MSC have been stratified into functional sub-
types, pro-inflammatory MSC1 and immunosuppressive
MSC2 subsets42. Whereas exposure to TLR4 ligand elicits the
MSC1 phenotype and production of IL-6 and IL-8, other ligands
such as TLR3 agonists direct the milder MSC2 phenotype42,43.
Thus, in a unified model, physiological levels of circulating LPS
establish a basal tone that guides the homeostatic MSC pheno-
type. LPS fluctuations of modest scope may elicited a self-limited
wave of myelopoiesis, whereas sustained increases in LPS in
tandem with other signals may drive inflammatory MSCs and
corrupt BM niches. TLR3 agonist has been used to direct MSCs to
an immunomodulatory phenotype in animal models of cardiac
damage44. Further, a number of clinical trials for MSC-based
therapies in graft tolerance, autoimmunity and cardiac repair are
ongoing45. Similar approaches may be useful for repairing local
damage to BM MSC niches during obesity and, more broadly, for
reducing risk of obesity-associated morbidities including cardio-
vascular diseases46.

What is the biological source of circulating LPS in obesity? It is
generally believed that LPS translocates from the gut to the
bloodstream via two mechanisms. First, as part of normal lipid
digestion, LPS absorbed from the gut is transported by chylo-
microns47. Consequently, there is a transient postprandial rise in
circulating LPS48,49. However, the amount of LPS in the blood-
stream is significantly higher following consumption of HFD
versus a control diet, and repeated daily HFD may lead to per-
sistent endotoxemia22,23. Second, obesity-associated inflamma-
tion compromises the integrity of the gut barrier, causing “leaky
gut” and microbial translocation to the bloodstream22,24,50. Mice
fed HFD exhibit increased intestinal permeability as measured by
the appearance of each fluorescent dextran and GFP-tagged E.
coli in blood following oral gavage51,52. LPS in the bloodstream
rapidly diffuses to BM eliciting changes in TLR4/MD2 complexes
on HSPCs20. Recently, therapeutic administration of the gut-
specific anti-inflammatory agent 5-aminosalicylic acid (5-ASA)
was shown to alleviate inflammatory and metabolic aspects of
obesity, including endotoxemia24. By reducing gut accumulation
of innate immune cells and inflammatory cytokines, 5-ASA
treatment improved intestinal barrier integrity, reduced serum
LPS, and increased both glucose tolerance and insulin tolerance.
Importantly, the beneficial effects on inflammation and metabo-
lism were observed even when 5-ASA was used to treat estab-
lished obesity. Another therapeutic approach is to reduce homing
of leukocytes to the colon using integrin antagonists. The
monoclonal antibodies vedolizumab (targets α4β7) and natali-
zumab (targets α4 integrin) that are being used clinically to treat
Crohn’s Disease and Inflammatory Bowel Syndrome may have
further application to obesity53. Indeed, beta7-integrin-deficient
mice are protected from obesity-associated insulin resistance and
metabolic disease24.
Fetal cord blood (CB) HSPCs express TLR4, and a next

question is the extent to which fetal HSPCs are vulnerable to
maternal endotoxemia54,55. Early developmental events in
childhood influence health later in life and increasing evidence
points to durable changes in offspring following maternal obe-
sity56. In non-human primates, maternal HFD diet changes the
fetal epigenome and transcriptome, and alters offspring micro-
biome through at least 1 year of life57–59. Fetal liver is a key site of
hematopoiesis during ontogeny. Only recently has the implica-
tion of maternal obesity to fetal HSPC activity been examined.
Offspring derived from murine HFD dams had reduced numbers
of LSKs, altered ratios of lineage-positive subsets, and distinct
reconstitution patterns when transferred to male but not
female HFD recipients60. Like adult BM HSCs, stimulation of CB
HSPCs with LPS has been shown to augment myeloid outgrowth
in vitro54. Even more striking is the impact of LPS on CB
HSCs in vivo. Using a humanized mouse model in which CB
was engrafted into immune deficient murine recipients, we pre-
viously showed that chronic low-dose LPS leads to CB HSC
exhaustion and myeloid>lymphoid bias19. In future studies,
it will be important to distinguish direct versus indirect
mechanisms of LPS action on CB HSPCs. One strategy for testing
a cell-intrinsic role for TLR4 is through shRNA knockdown61.
Equal numbers of control and TLR4-knockdown HSPCs derived
from the same CB donor may be mixed for competitive
analysis in vitro or in vivo. Observations of myeloid bias in the
TLR4-sufficient but not TLR4-deficient donor partner would
provide support for a direct effect of LPS. Few treatment options
are available for managing the risks to the fetus of maternal
obesity6. 5-ASA, the gut-specific anti-inflammatory therapeutic
that has been used to alleviate metabolic disease has minimal
side effects, at least in adult, and may be a good candidate for
further testing in murine models of pregnancy in the context of
obesity24.
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In 2016, the International Agency for Research on Cancer
(IARC) Handbook Working Group re-affirmed a significant
association between obesity and cancer risk in adults and chil-
dren62. A recent review article summarizes evidence of link
between obesity and multiple cancers of blood cell origin63. The
IARC also reported strong evidence for a causal link between
persistent inflammation and the obesity-cancer risk but the pre-
cise mechanisms remain unclear. Persistent TLR4 signals in the
BM of obese individuals may contribute to a permissive inflam-
matory environment. In a mouse model of genetic pre-disposition
to spontaneous acute lymphoblastic leukemia (ALL) HFD mice
progressed to frank ALL earlier than controls, suggesting that
obesity may promote tumorigenesis64. Fortunately, at least some
obesity comorbidities are reversible. In pediatric patients treated
for ALL, obese children who subsequently attained normal weight
during treatment had morbidity risks equivalent to individuals
who had normal weight throughout65.

Together, our findings reveal a new mechanism by which
obesity impairs BM integrity. We show that BM malfunction
arises early in obesity and depends on precursor-intrinsic TLR4.
We further show that at least some BM perturbations can be
recapitulated by persistent exposure to LPS at levels physiologi-
cally relevant to obesity. Obesity is an urgent health problem
among adults and, increasingly, children. Interventions that
reduce circulating LPS or dampen TLR4 signals may improve BM
integrity in obese individuals.

Materials and methods
Mice. Four-week-old male C57BL/6J mice on the CD45.2 (Stock No: 000664) or
CD45.1 (Stock No: 002014) background were fed nutrient-matched diets with 40
kcal% fat (Harlan TD.96001) or 60 kcal% fat (Research Diets D12492), starting at
weaning, whereas control mice received respective lean diets matched for protein
source, ratio of lard to corn oil (Harlan TD.110340 or Research Diets 12450B,
respectively). Protein, vitamins, and minerals are equivalent on the basis of kcal
density. Some cohorts using the same 60 kcal% and control Research Diets were
purchased directly from The Jackson Laboratory (#380056 and control 380050).
For chronic LPS exposure, 4-week old female C57BL/6J mice received 6 μg LPS or
vehicle, i.p., for 6 weeks as described except that doses were administered every
other day instead of daily18. Fetuin-A heterozygotes, a kind gift of Dr. Willi Jah-
nen-Dechent, were maintained on the original the C57BL/6N background by
interbreeding. Mice were housed in a specific pathogen-free/SPF facility. Permis-
sion was granted to perform animal experiments by the Institutional Animal Care
and Use Committee at the University of Pittsburgh School of Medicine.

Flow cytometry and BrdU. Cell surface and intracellular staining was performed
as described19. Primary anti-mouse Abs included lineage biotin (NK1.1 (PK136,
dilution 1/100), CD11b (M1/70, dilution 1/400), CD19 (MB19-1, dilution 1/100),
B220 (RA3-6B2, dilution 1/800), CD3 (145-2C11, dilution 1/100), TER-119 (TER-
119, dilution 1/200), and Gr-1 (RB6-8C5, dilution 1/800)), Sca-1 FITC (D7, dilu-
tion 1/400) or APC (D7, dilution 1/200) or Cy5PE (D7, dilution 1/400), c-Kit PE
(2B8, dilution 1/50), or Cy5PE (2B8, dilution 1/100), CD19 Cy5PE (MB19-1,
dilution 1/50), B220 APC (RA3-6B2, dilution 1/800), CD115 PE (AFS98, dilution
1/400), CD135 PE (A2F10, dilution 1/50), CD150 Cy7PE (mShad150, dilution 1/
50), CD48 APC (HM48−1, dilution 1/100), CD14 FITC (Sa2−8, dilution 1/25),
CD45.1 PE (A20, dilution 1/100), CD45.2 FITC (104, dilution 1/400), ST-2 bio
(RMST2-2, dilution 1/50). Secondary reagents were streptavidin-Cy7PE (dilution
1/800), -Cy7APC (dilution 1/800) or -Pacific Blue (dilution 1/400). Flow cytometry
was performed on a 5 laser, 16 detector LSR II or a 5 laser 18 detector LSR Fortessa,
and cell sorting was performed on a 5 laser, 17 detector Aria. Data were analyzed
with FlowJo software (Tree Star). BrdU incorporation and annexin V staining was
performed as we have previously described66. For BrdU, mice were injected i.p.
with 600 μg BrdU or PBS at 12 h intervals, and 48 h after the first injection bone
marrow was isolated. Cells were stained for surface markers followed by intracel-
lular staining with anti-BrdU antibodies using the BrdU flow kit (catalog number:
556028) according to manufacturer’s instructions (BD Biosciences).

Emergency hematopoiesis. Mice were injected i.p. with 150 mg/kg body weight 5-
FU. Peripheral blood was analyzed prior to treatment and at the indicated time
points thereafter by flow cytometry66. For acute LPS treatment, mice were injected
i.p. with 1 μg/g body weight LPS or PBS control once a day for 2 days and were
killed on day 3, as described66.

Murine reconstitution chimeras. C57BL/6 male mice (6–8 weeks of age) served as
hosts and also a source of competitor BM as described19. Donor and host/com-
petitor were distinguished with CD45 alleles. Hosts given a lethal (900 rads) dose of
gamma radiation were engrafted with a total of 2 × 106 BM cells (donor+ com-
petitor) i.v. via tail vein. Following 1 week of engraftment, recipient mice were fed
the HFD or NCD indicated in each figure legend.

Morphometric and metabolic indicators of obesity. Body fat composition and
liver triglycerides were determined as described27. For glucose tolerance testing, 6-h
fasted mice were injected i.p. with 1.5 g/kg glucose and glucose was measured from
venous blood with a glucose monitor.

Cell culture. For serum-free liquid culture assays, sorted LKSneg, CLP or LSK
subsets were cultured with X-VIVO 15 medium (Biowhittaker) supplemented with
10% BSA (StemCell Technologies) and either IL-7, flt3 ligand and stem cell factor
(lymphoid) or M-CSF (myeloid) cytokines as we have done66. At harvest as
indicated in the figure legend, cells were stained with antibodies to B220, CD19,
CD11b, or Gr-1. For in vitro colony-forming assay, sorted HSC or MPP or WBM
were cultured in MethoCult M3434 (StemCell Technologies) and colony-forming
potential was assessed on day 1066.

Gene expression analysis. RNA was extracted using an RNeasy Micro Kit per the
manufacturer’s instructions (QIAGEN) and reverse transcribed into cDNA with
Superscript III Reverse Transcriptase (Invitrogen) using oligoDT primers. For
NanoString analyses, total RNA was hybridized and quantified with the nCounter
Analysis System (NanoString Technologies) using a custom codeset (Supplemen-
tary Table 1). RNA was hybridized per manufacturer’s instructions and data were
normalized to five housekeeping genes: tbp, G6pdx, Polr1b, Gusb, and HPRT using
manufacturer’s nSolver software. For quantitative real-time PCR, reactions were
performed in triplicate using TaqMan probes (Invitrogen). Expression levels were
calculated for each gene relative to beta actin and expressed as the fold difference
relative to control.

Statistics. Statistical significance of differences between group means (p < 0.05)
was established using Student’s t-test for pairwise comparisons. Multiple com-
parisons were performed using paired t-tests with the Bonferroni step down cor-
rection of p. Error bars on graphs reflect standard error of the mean, with the
number of mice indicated in each figure.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its supplementary information files, or are
available upon reasonable requests to the authors. All Nanostring data have been
deposited in the Gene Expression Omnibus (National Center for Biotechnology
Information) under accession number GSE109269.
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